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Abstract

Design� Construction� and Commissioning of the

Time�of�Flight Detector for BNL�AGS Experiment

���

by

Christopher L� Stokely

A Time�of�Flight �TOF� detector is used to provide particle identi�cation in BNL�

AGS Experiment �	
� It is also used to assist in tracking and as a fast trigger� Results

are presented from simulations which optimized the dimensions and position of the

TOF system� Rates for measuring daughters of certain strange neutral particles are

given for several cuts� Based on these simulation results� TOF detectors were added

to the experiment� The analysis of data from a �		� heavy ion beam run and a �		�

secondary beam run are discussed� From this data� evidence for signi�cant correlated

noise is observed� The best method to estimate the location of the minimum ionizing

peak of the ADC distribution was found among several di
erent methods� Two

di
erent methods to slew correct the TDC data are investigated� E
ects of momentum

variance and path length variance on the time resolution of one of the TOF detector

slats are studied� Plans to improve the detector for the upcoming �		� heavy ion

beam run are also discussed�
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I� Introduction to BNL Experiment ���

Experiment �	
 is a �xed target experiment at the Brookhaven National Laboratory

�BNL� Alternating Gradient Synchrotron �AGS�� It uses an ����� GeV�c per nucleon
���Au beam on a �xed ���Au target� E�	
 was designed to search for the H� dibaryon�

a short�lived neutral particle with a six quark uuddss content�� The existence or

nonexistence of the H� dibaryon places strong contraints on various models which

either predict or refute the H�� ��� In addition to the H� search� E�	
 was designed

to study the production of � and � hyperons and K�
s mesons in relativistic

���Au �

���Au collisions� Experiment �	
 is e�cient in measuring the following weak decay

channels� H� � p � �� � p � n � ��� � � p � ��� � � p � ��� and K�
s � ��

� ���

In the original Proposal �	
 ���� only tracking information was to be used in the

search for the H�� There are� however� several backgrounds that can resembleH� decay

topologies� which are secondaries produced from neutron and gamma interactions

with the materials of the Distributed Drift Chamber �DDC�� the major tracking

detector of E�	
� There are similar backgrounds for the reconstruction of the �� ��

and K�
s� Combining direct particle identi�cation with DDC tracking dramatically

reduces these backgrounds� ���

A time�of��ight �TOF� detector can provide the velocities of particles for which

the momentum and full path length are known from DDC tracking� Below speci�c

�It was �rst predicted by Ja�e using the MIT bag model� ���
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momenta� the velocities �group� according to the very di
erent masses of pions�

kaons� and protons� This allows one to place cuts on plots of track velocity versus

momentum to directly identify the species for each track�

In addition to providing Particle Identi�cation �PID�� a TOF detector can assist

in the reconstruction of DDC tracks by providing positions of particle hits on the

TOF detector after a long �ight path� A TOF detector can also be used as a fast

trigger for daughters of rare particles�

For these three reasons� a TOF detector was designed for E�	
 using Geant

simulations� These simulations determined the optimal TOF detector con�guration

among several possible options and under a number of contraints� This TOF detector

design will be shown to provide reasonable e�ciencies for identifying the daughters

of H� dibaryons� � and � hyperons� and K�
s mesons�

The detector so designed was then constructed� The TOF detector and its hard�

ware and electronics will be discussed in Section IV� Analysis results from the January

�		� ���Au run and the May �		� charge one secondary beam run at the AGS will

be presented in section V� The summary and the discussion of the future plans are

given in section VI�

II� Experimental overview of E���

Figure � shows a top view of the E�	
 setup as originally proposed� Also shown

is the path of the noninteracting gold beam� Starting on the left side of Figure ��
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Figure �� Top view of E�	
�

the beam �rst passes through two beam counters� which provide the start time for

each event� Each beam counter consists of a ����m thick quartz Cerenkov radiator

viewed by two very fast Hamamatsu ���� PhotoMultiplier Tubes �PMTs�� These

beam counters were shown in BNL�AGS E��� to have a time resolution on the order

of ��ps� ���

About ��m downstream of the beam counters� the beam passes through a thin

gold target located in the sweeper magnet� Next to the target is the Silicon Drift

Detector Array �SDDA�� which is a tracking detector for particles that decay close to

the target�

Downstream of the SDDA is a tungsten collimator� The strong ���T vertical

�eld of the sweeper magnet de�ects many of the charged particles from beam�target

collisions into the collimator so that the charged particles from these collisions do
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not �swamp� the charged decay products of the H�� �� �� and K�
s� This provides

for a relatively clean environment for neutral particle decay searches in the detectors

downstream of the collimator�

Downstream of the sweeper magnet is the analyzer magnet and the Distributed

Drift Chamber �DDC� is positioned in its bore� The DDC consists of ��� wire chamber

planes� The paths of charged particles that traverse the DDC are curved by the ���T

vertical �eld of the analyzer magnet� allowing the momentum and positions of DDC

tracks to be determined�

About 
m downstream of the DDC is the Multi�Functional Neutron Spectrometer

�MUFFINs�� It will be used in identifying neutrons from various predicted decays of

the H� dibaryon�

With this original detector layout of E�	
� a TOF detector was designed using

Geant simulations� The TOF system will rely on the DDC to provide momenta and

path lengths of DDC tracks that hit the TOF walls� The TOF detector will also rely

on the beam counters to provide the start times for each event� The simulations are

described in the following section�

III� Optimization of the Design

A� Introduction to Geant Simulations

Simulations were done to optimize the arrangement of the TOF system prior to its

construction� and to simulate the performance of the TOF system for the development
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of analysis software� Geant was developed at CERN and is commonly used in high

energy nuclear physics to design detectors� It is a library of Fortran routines that

simulate particle trajectories� their de�ections in a magnetic �eld� their energy losses

in materials� their decays� and so on�

Files are read in by Geant to specify the size� position� and material composition

of all volumes within the software version of the experiment� The magnetic �elds used

in these simulations were Tosca model generated �eld maps� �
� An event is started

by specifying the momentum� initial position vertex� and species of each particle� Full

kinematics of particles that hit the TOF detector are stored in N�tuple format�� In

addition� full kinematics of the parents of the particles that hit the TOF detector are

also stored�

These simulations investigate the sensitivity of various TOF geometries to the

daughters of H� dibaryons� � and � hyperons� and K�
s mesons� The TOF detectors

must be sensitive to low momentumpions from H�� �� and � decays� high momentum

pions from K�
s decays� high momentum protons from H� and � decays� and high

momentum antiprotons from � decays� The TOF detector width is determined by

the lowest momentum positive and negative daughters of these four di
erent parent

types� which are the negative pions from � decays and the positive pions from �

decays�

�The exact values of the data are stored in a table�like format called an N�tuple�






The simulations will investigate the multiple hit probabilities of the TOF slats�

The position of the TOF detector and the width of its slats determine these probabil�

ities� The goal was to minimize these probabilities by varying TOF detector positions

and slat widths� One wants to minimize these probabilites since TOF data is much

more di�cult to analyze when more than one charged particle hits a single slat in an

event�

A number of di
erent geometrical con�gurations of the TOF system were stud�

ied� Included in these di
erent con�gurations is an existing detector built by McGill

University for the previous BNL�AGS Experiment ���� The Rice University group

assumed control of this TOF detector�

The speci�c restrictions on the possible geometries are as follows�

� The MUFFINs detector placement was �xed and the TOF detectors have to be

placed either in front and�or behind the MUFFINs�

� At least � meters had to be left free downstream of the analyzer for DDC

mounting and access�

� Due to cost considerations� approximately �� TOF slats were the maximum

number of slats that could be built to augment the existing wall�

� There were space constraints from radiation shielding blocks because of an ex�

periment adjacent to the E�	
 beam area�
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The goal was to design the optimal TOF system under these constraints that is a

combination of the E��� wall plus one to two additional walls which would be built at

Rice University� The event types and cuts used in these simultions are now described�

B� Event Generation within the E��� UT Geant

There were three methods to generate the events for input to Geant� Hijet events�

Monte Carlo events� and Fiducial events�

� Hijet events� These are complete events of ���
 GeV�c per nucleon ���Au on

a �xed ���Au target generated using the Hijet model� ��� These events are stored in

a text �le which contains the particle ID and three�vector momentum for all of these

particles in each event� Geant reads this �le and propagates these particles starting

from the target�

Processing complete events is extremely CPU intensive and time consuming� For

much quicker but also accurate studies of the e�ciencies for measuring decay daugh�

ters in the TOF system� so�called Monte Carlo events and Fiducial events are used�

� Monte Carlo �MC	 events� These events include only one particular parent

type� i�e� �� �� or K�
s� emitted from the target� The multiplicity per event of these

parents is sampled from probability distributions obtained from the complete Hijet

events� For each particle� the rapidity and transverse momenta are sampled from the

two�dimensional �y�Pt� distributions obtained from the complete Hijet events�

� Fiducial �Fid	 events� These include only one parent per event� either a ��

�� K�
s� or H�� that decays within the �ducial volume of the DDC� These events are
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stored in a text �le� which contains both the position of the decay vertex and the

three�vector momenta of the particular parent particle� The single particle �ducial

events are read into Geant� and the lifetime of the parent under study is made

arbitrarily small so that it decays immediately�

To generate the �ducial event �le� a rapidity and transverse momentum for each

parent particle is sampled from distributions obtained from the complete Hijet

events� In addition� each parent particle is assigned a sampled lifetime� dilated in

the lab frame� The momentum and the lifetime of the parent particle are used to

determine if it decays within the bounds of the DDC� If so� the three�vector mo�

mentum and three�vector decay vertex are saved� The overall probability for these

�ducial decays is also saved to allow the scaling of the numbers of these events to the

equivalent number of complete events�

These events are studied since the presence of the decay vertex in the �ducial

volume of the DDC provides the cleanest possible measurement of the parent decay�

However� the rates for these decays are much lower than MC events� which include

decays upstream of the DDC�

In the Fid events� the H� is assumed to have a lifetime of c� � �cm� mean rapidity

�y � ����� gaussian rapidity distribution width �y � ���� and transverse momentumPt

� ���MeV�c� In both the Fid events and the MC events� the rapidity and transverse

momentum distributions of the � were assumed to be the same as the �� �

�This was done since there is currently very little spectral data for the 	�



	

C� Cuts on the Simulated Data

The simulation results for a certain progression of cuts on the simulated data will

be discussed below� These cuts are intended to be similar to those imposed by the

experiment and the analyses�

CUT � � To pass this cut� a particle must hit a TOF slat� This cut therefore im�

poses the geometrical e�ciency of the TOF system for detecting a particular particle�

daughter or otherwise�

CUT 
 � This cut requires that a track associated with a hit in the TOF wall pass

through at least ��cm of the �ducial volume of the DDC� For daughters that pass this

cut� it is assumed that the momentum and path length of the particle can be obtained

from the DDC �each with a resolution that can be adjusted within the simulations��

This cut is a minimal requirement on the �trackability� of the particles that passed

Cut �� as the TOF relies on the DDC for determining the momentumand path lengths

of tracks�

CUT � � This cut requires that both daughters of a particular parent pass Cuts �

and �� It is at this level where the simulation results are speci�c to the measurement

of a particular parent particle�
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CUT � � This cut requires that the daughter momenta is less than the maximum

momenta for which the daughter can be positively identi�ed on the basis of its TOF�

These cut�o
 momenta were determined using complete events and estimates for the

DDC momentum resolution � p�p in the range ���!� and TOF resolution �������

ps�� These resolutions are expected to be similar to those in the actual experiment�

Tracks that pass this cut are directly identi�ed�

D� Comparison of Di
erent TOF Geometries

The performance of three di
erent con�gurations� called options A� B� and C� were

compared� For each option� the multiple hit probabilites� geometrical e�ciencies�

and the e�ciencies for direct PID were studied� Top views of the experiment for the

the various options are shown in Figure �� In option A� a wide downstream wall is

positioned in front of the MUFFINs detector� In options B and C� two downstream

walls are positioned on beam left and beam right of the MUFFINs��

The upstream wall is used to measure the low momentum pions from the decays

of the �� �� and H�� The downstream wall is used to measure the high momentum

pions from K�
s decays� high momentum protons from � and H� decays� and the high

momentum antiprotons from � decays� For the upstream wall� only the E��� TOF

detector was granular enough to give acceptable multiple hit probabilities�

�Looking down the beam
 beam left refers to positions left of the beam� Beam right refers to
positions right of the beam� Sometimes either are used to infer left or right of some reference point
and not necessarily the actual beam�
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Magnet
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Sweeper 
Magnet
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wall
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wall

Option B:

Option A:

Figure 
� Options A� B� and C�

Option A was shown to be unacceptable because of a poor overall PID e�ciency

��ight path too short�� and a poor geometric e�ciency for measuring the low mo�

mentum pions in the upstream wall� In addition� the downstream wall in option A

would have to be very granular �well exceeding the �� slat constraint� because of the

observed high multiple hit probabilities�

Options B and C were also shown to be unacceptable because of the very high

number of hits on the downstream wall from secondaries produced in the MUFFINs�

The simulations implied that a fourth con�guration� called D� would outperform

the A� B� and C con�gurations� Con�guration D is shown in Figure �� In this

con�guration� the detector used in E��� is �anked by two smaller side walls�
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Sweeper 
Option D:

Magnet

Analyzer
Magnet

MUFFINs

Figure �� Option D�

For this con�guration� the multiple hit probabilities in each slat is shown in Figure

�� Hijet events from central collisions �impact parameter b��� were used� and all

secondaries produced in interactions downstream of the target are included� The top

plot in Figure � shows that the multiple hit probabilites in the highly granular central

wall are less than ��!� The two side walls are positioned in relatively lower particle

occupancy regions� and this allows for wider slats than in the central wall�

Figure � also gives the local x distributions on the TOF con�guration D for the

daughters of the four di
erent parents that E�	
 is capable of measuring� One notices

that the daughters of the Fid parents are closer to the center of the wall than that

of the MC parents� The Fid events require that the parent particles decay in the

DDC� and this hardens the momentum spectrum of the parents compared to the MC

events� The higher momentum daughters from these parents are de�ected less by the

�eld of the analyzer magnet� These plots show that the TOF walls have a relatively

high geometric e�ciency for measuring all of the daughters for both Fid parents and

MC parents�
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Figure �� In the upper frames� the probabilities for two or more hits per slat
versus the local x distribution� The bin widths in the upper two frames are
the slat sizes used in the simulations� Below the top plot is a plot that shows
where projectile like protons and neutrons hit the wall� where the gold beam
would hit the wall� and the location of the MUFFINs detector behind the TOF
wall� The term �projectile like� refers to particles that have rapidities close to
that of the beam� In the lower two frames� the local x distributions as shown
for the daughters of H�� �� �� and K�

s parents� Note the bin widths are not
the slat widths in these lower two frames� The thick vertical lines in the lower
frames indicates the local x position of the uninteracting Au beam�
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Figure �� The ��� versus momentum distributions for positively charged
particle hits on the E�	
 TOF wall� The various frames show the results for
di
erent values of the momentum resolution and TOF resolution assumed in
the simulations�

Figure � shows a plot of inverse velocity� ���� versus the momentum for protons�

positive kaons� and positive pions� The error bars shown in these plots correspond

to the standard deviations� The cuto
 momenta for ���K� separation and K��p

separation are determined from these plots for two di
erent DDC momentum resolu�

tions and two di
erent TOF resolutions� Particles below the cuto
 momenta can be

identi�ed directly with high e�ciency and low background� The cuto
 momenta are

de�ned here to be the momentum at which the standard deviation bars for the TOF

of the pions� kaons� and protons begin to touch� The cuto
 momenta so de�ned are

shown for positive and negative particles in Table �� In general� the cuto
 momenta
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decrease as the momentum resolution decreases� Also� the cuto
 momenta decreases

as the TOF resolution decreases� These cuto
 momenta are in the range � to � GeV�c

for ��K separation and 
 to � GeV�c for K�p separation�

The rates for measuring the di
erent parent particles with the option D geometry

is given in Tables � and �� These rates are the numbers per event that pass the cut

level listed� The � rates are calculated assuming the same multiplicity per event as

the �� One should include factors on the order of a few times ���� for the actual

production rate of � hyperons as compared to � hyperons� The H� rates are calculated

assuming ��� H� per central event� The rates per week are calculated assuming that

��� central events per second are written to tape� and that there are ��� hours of

AGS beam per week�	

For the MC events shown in Table �� the rates are � to �� times higher than the

rates for Fid events shown in Table �� The rates are lower for the Fid events because

of the requirement that the parent particle decay in the �ducial volume of the DDC�

Many of the MC generated parent particles are reconstructable based on the TOF

system even though they decayed upstream of the DDC�

Shortly before the �		� gold run� radiation shielding blocks were inserted between

the E�	
 beam area and an adjacent experiment� Because of this� the beam left wall

in the D con�guration was moved slightly forward and made narrower� The beam

right wall was made slightly wider to use the extra available TOF slats� Shown in

�The design of the E��
 data aquisition system and the trigger allows approximately ��� central
events per second to be written to tape�
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Table �� The cuto
 momenta for separating pions from kaons and kaons
from protons� Below these momenta� particles are directly identifyable with
high e�ciency and low background� The uncertainty in these momenta is ���
GeV�c�

Cuto� momenta

 p�p��!  p�p��!  p�p��!  p�p��!
�TOF���ps �TOF���ps �TOF����ps �TOF����ps

���K� ��� GeV�c ��� GeV�c ��� GeV�c ��� GeV�c
���K� ��� GeV�c ��� GeV�c ��� GeV�c ��� GeV�c
K��p 
�	 GeV�c 
�	 GeV�c ��� GeV�c ��� GeV�c
K��p 
�� GeV�c ��� GeV�c ��
 GeV�c ��� GeV�c

Table 
� The rates per ��� hours of AGS beam for the MC events for the
three di
erent cuts� assuming ��� events per second written to tape�

Rates from the MC events per week

���� ��p ��p ���� K�
s��� K�

s���

cut �� ����e� ��	�e� ����e� 	���e
 ����e� ��		e

cut �� 	��
e
 	��
e
 ��
�e
 ��
�e
 ����e
 ����e

cut �� 	���e� 	���e� 	�		e� 	�		e� ����e� ����e�

Table �� The rates per ��� hours of AGS beam for the Fid events for the
three di
erent cuts� assuming ��� events per second written to tape�

Rates from the Fid events per week

���� ��p ��p ���� K�
s��� K�

s��� H���� H��p
cut �� ����e
 ����e� ����e
 ����e
 ����e� ����e� ��	�e� ��	
e�
cut �� ����e
 ����e
 ����e
 ����e
 
���e� 
���e� ����e� ����e�
cut �� 
���e� 
���e� ����e� ����e� ����e� ����e� ����e� ����e�
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Sweeper 
Magnet

Analyzer
Magnet

MUFFINs

Option E:

Figure �� The �nal arrangement of the three TOF walls in E�	
�

Figure 
 is this con�guration� called Option E� It is this E geometry that was proposed

for the �nal con�guration of the E�	
 TOF system� Given this design� the central

wall was positioned and two smaller TOF detectors were constructed and positioned�

IV� TOF Hardware and Electronics

The three TOF detectors consist of an existing TOF wall and two TOF walls built at

Rice speci�cally for E�	
� The existing TOF detector was built by McGill University

and used in BNL�AGS Experiment ���� The Rice University group assumed control

of this detector in E�	
� It is positioned as the central TOF wall� The two side walls

were built at Rice in late �		
 and subsequently positioned in the E�	
 beam area�

Even though the central TOF wall was already built� it took months of hard work

to make it operational� Before positioning the wall in the E�	
 beam area� it required

a complete uncabling and disassembly� Cables� patch panels� and discriminators were

positioned to minimize scattering into the MUFFINs detector located directly behind

the central TOF wall� Fifty bundles of twelve 
��ns long RG��� cables were routed

from the counting house to the TOF detector� Connectors were replaced on almost
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all these cables� Three hundred high voltage RG��	 cables were made and routed

from high voltage power supplies outside of the experimental area to the central TOF

array PhotoMultiplier Tubes �PMTs��

The central TOF array consists of ��� slats� all of which are ��cm long and ��� cm

thick� Of the ��� slats� ��� are ���cm wide and �	 are ��� cm wide� An average time

resolution of ��ps for all of the slats in the wall was observed in E���� ��� An average

y�position �i�e� along the slat� resolution of ���cm was also observed in E���� ���

There are are a total of �� slats in the two side walls� All of the side wall slats are

�cm wide� ���cm long� and ���cm thick� Of these �� slats� �
 slats are in the beam

left wall and �� slats are in the beam right wall� The slats are stacked side�by�side

in aluminum unistrut frames� Bicron BC��� scintillator was used because of its fast

���ns decay time constant and acceptable ��
m attenuation length�

A Hamamatsu ��	� PMT was directly glued to each end of the slat scintillator�

This was done based on simulations comparing �shtail lightguides to direct contact

of the PMT with the scintillator� ��� The slats were �rst wrapped with aluminum

foil �except near the PMT photocathodes� and then wrapped with a layer of opaque

plastic to optically isolate the slats�

In total� �ve LeCroy ����F Fastbus charge�integrating analog�to�digital converters

�ADCs� and seven LeCroy ����A Fastbus time�to�digital converters �TDCs� were used

to collect the TOF data� The ADCs digitize the analog pulse signals� and the TDCs

digitize the time signals in ��ps bins� The TDCs are �common start� TDCs� They
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measure the time between a start signal provided by the trigger and a stop signal

provided by the TOF detector�
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Figure �� There are two signal cables from each PMT� One cable is used for
the pulse area measurement and the other is used for the time measurement�
Both of these signals are cable delayed 
��ns before being input to ADCs and
TDCs� This long cable delay is required to allow for the trigger decision time�

As shown in Figure �� the signals from each PMT are resistively split in each base

into two equal amplitude outputs� One of the two signal cables is used for measuring

pulse areas� while the other one is used for the time measurement� All TOF detector

signals are sent through approximately 
��ns of RG��� cable to the TOF Fastbus

crate in the counting house�

The TOF detector PMTs were powered by two daisy�chained LeCroy ���� Power

Supplies� A ��Sr beta source and a LeCroy ��
� image intensi�ed oscilliscope were

used at the TOF detector to set the voltage of each PMT� For a single PMT signal

output cable� the PMT voltages were adjusted so that the PMT signals would have
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a maximum pulse amplitude of ���mV at the detector� with the source held at the

center of each slat� Some of the PMTs were weak and were set to less than ���mV�

Instead of matching pulse areas �i�e� the ADC values�� the pulse amplitudes were

matched so as to give the best possible time measurement� This was done to equalize

the rise time of the PMT pulses �with the source at the center of the slat�� which

is better determined by matching the pulse amplitudes� High voltage on the central

wall PMTs varies from �����V to �����V� depending on the tubes and bases� High

voltage on the side wall PMTs varies from �����V to ��	��V�

For the pulse area measurements� the raw PMT signals are sent through 
��ns

long ��" RG��� cables to patch panels in the counting house� where they are then

connected to Fastbus ����F ADCs using approximately 
ns long ���" �twisted pair�

cables� Instead of ���" twisted pair cables� ��" �at coaxial cables were originally

tried to impedance match all the ADC cables� These coaxial cables were found to

be more susceptible than the twisted pair cables to noise from the Fastbus power

supply� With the Fastbus power supply on� a peak�to�trough ground noise of ��mV

was measured for the coaxial cables� For the twisted pair cables� a ���mV peak�to�

trough ground noise was measured� With the ���" twisted pair cables� the signal

re�ections from the impedance mismatch were acceptably small� less than one percent

of the original ADC value after being re�ected through ����ns of RG��� cable�

For the time measurement� one of the signal cables from each PMT is input to a

Phillips ��
 ���MHz leading edge NIM discriminator placed next to the TOF detec�
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tor� This was done to reduce the e
ects of dispersion� attenuation� and noise pickup

that the raw signals would have experienced before being sent to the TOF Fastbus

system through 
��ns long RG��� cables� Since the time measurement improves as

the rise time of pulses decreases� it is best to discriminate the pulses where they have

the fastest rise times # near the detector PMTs� The threshold of these discrimi�

nators was set to approximately ���mV� In the counting house� these signals were

rediscriminated and converted to ECL by Phillips ���
 CAMAC discriminators be�

fore being input to the Fastbus LeCroy ����A TDCs� These rediscriminated signals

provide the stop signal for the TDCs�

The start signal from the beam counters was rediscriminated and fanned out three

ways� One of these went directly to the LeCroy ���� Calibration and Trigger �CAT�

module to provide the TOF Fastbus busy signal for the E�	
 data acquisition system�

The remaining two signals are used to provide the TDC start signals and the ADC

gates� The TDC start signal was provided by cable delaying the fanned signal by

approximately ���ns before signals arrived at the Fastbus TDCs� This cable delay

was done to account for ��ns initial dead time within the TDC module� and an extra


�ns so the TDC signals would digitize in the linear mid�scale region of the TDC�

The ADC gate was set up by sending the third signal to a gate generator� and

then through a cable delay� The ADC gate generally is set to start approximately

��ns before the raw analog signals arrive from the TOF detector PMTs� There is a

��ns initial deadtime in the ADC module� and one wants a few tens of ns room before
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the earliest signals arrive� The ADC gate width was set to ���ns to accomodate the

typical ���ns width of the analog signals �after passing through 
��ns long RG���

cables� and also leave a few tens of ns room afterwards�

It was discovered that all of the LeCroy Fastbus ����A TDCs were much noisier

than what would have been expected from the manufacturer speci�cations�
 This

noise is clearly seen in a simple test� a pulser is fanned into two signals� one is input

into the TDC start and the other is cable delayed to be in the linear region of the

TDC� Instead of a single TDC channel being recorded as expected� an RMS width of

� to � channels is observed� The e
ects of this Fastbus noise will be discussed in the

analysis in section VI� and comments on solving this problem are made in the �nal

section�

V� Performance of the TOF detectors in the Experiment

The �rst data was taken during the last two weeks of January �		� with an ����

GeV�c per nucleon ���Au beam on an ���Au target� The central TOF wall was up

and in the data stream for this run�

The data obtained in this run was not ideal for the TOF analysis since the DDC

performed very poorly�� To fully calibrate the TOF� one needs to use DDC tracking

�An RMS width of � channel is typical� An RMS width of � channels is the maximum�
�The DDC front end electronics were extremely noisy and produced false data in large regions of
the DDC�
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to account for di
erences in the TOF of particles with known momenta and path

lengths�

Eight hours of data were taken in May �		� with a secondary beam of protons and

positive pions� All three TOF arrays were in the data stream during this run� The

beam was swept across as much of the TOF walls as possible� This was done with the

sweeper magnet turned o
 and varying an upstream beamline magnet �called D���

at four di
erent analyzer magnet settings� ranging from zero �eld to full �eld�

There were three goals of this second run� to obtain relative TDC o
sets of slats�

to extrapolate �clean� tracks through the DDC �� track in the DDC per event�� and

to develop software to extrapolate tracks through the analyzer magnet fringe �elds

to the TOF detector� The DDC was working properly during this beam run� Single

tracks in the DDC are ideal for developing DDC tracking and calibration software�

In addition� it is ideal for developing software to extrapolate tracks from the DDC

to the TOF detectors� This data is useful for developing TOF calibration algorithms

before the next six week gold beam run in spring of �		��

In the remainder of this section� calibrations and analyses of the data from these

two runs will be discussed� Speci�cally� pedestals and correlated noise will be inves�

tigated� Di
erent methods for scaling the ADC gain data and two di
erent slewing

corrections will also be described� Throughout this data analysis� slats are referred

to by unique �hole� numbers� These are positions in the TOF detector mounting

structures where slats may be placed�



��

A� Pedestals

When a PMT is not exposed to any light� a value is recorded by the ADC which is

called the pedestal� There are two contributions to the pedestal� one is intrinsic to

the ADC� and the other is the dark current of the PMT and any noise in the line�

Figure � shows two typical pedestal distributions for adjacent central TOF wall

PMTs� In the left plot in Figure �� the mean is at ����� channels� with an RMS

width of 	�� channels� The right plot in Figure � has a similar mean and RMS width�

The mean of the distributions is drawn in the plots� The mean accurately estimates

the center of the pedestal distributions for all the PMTs� These pedestal means are

saved in TOF calibration �les for subsequent analyses�

ADC pedestals, top PMTs, run 342a, 2000 events
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Figure �� Two typical pedestal distributions� The mean is ����� channels
in the left plot and ��	�� channels in the right plot� The RMS width of these
distributions is ��� channels�
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The pedestals in Figure � have a ��� channel RMS width� These pedestals

are very wide� and this is caused by signi�cant amounts of correlated noise in the

experiment� ���� Figure 	 shows the pedestal of one PMT versus the pedestal of

another PMT� This plot shows that the pedestals are strongly correlated� which is

veri�cation of the presence of correlated noise in the experiment� Hardware plans to

deal with this correlated noise are discussed in Section VI of this Thesis�

Correlated ADC pedestals, top PMTs, run 342a, 2000 events
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Figure �� This �gure shows the pedestal of one PMT versus the pedestal of
another PMT� This plot shows that the pedestals are clearly correlated� which
is evidence for correlated electrical noise in the experiment�

B� ADC gains

Figure �� shows two typical pedestal mean subtracted ADC distributions for a �hit�

PMT� A PMT is considered to be hit if its TDC value is greater than zero� The clear

peak in both of these ADC distributions corresponds to a single Minimum Ionizing

Particle �MIP�� The plot on the left in Figure �� is from the gold run for a slat where
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large numbers of primary protons are hitting� A small peak to the right of the MIP

peak is seen� This corresponds to the pile�up of two MIPs in the same slat in one

event� The plot on the right in Figure �� is a pedestal subtracted ADC distribution

from the secondary beam run� There is no pile�up peak seen� since each event has

only one single charged particle�

Pedestal mean subtracted ADC distributions, 20000 events
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Figure ��� Pedestal subtracted ADC distributions� The plot on the left is
from the gold run and the plot on the right is from the charge one secondary
beam run� The peak in both plots corresponds to the MIP peak� In the left
plot� there is a tail seen to the right of the MIP peak� which corresponds to
the pile�up of two MIPS in a single event� three MIPS� etc� No pile�up peak
is seen in the right plot� since there was only one particle per event in the
secondary beam run�

Frequently� position�independent ADC and TDC values are useful� Both the top

and bottom PMTs of a slat are used to calculate these quantities� A position�

independent ADC value greatly reduces the e
ects of attenuation as light travels

down the slat to the PMT� This attenuation is signi�cant since the slats are about

the same length as the attenuation length of the scintillator� Attenuation broadens
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the ADC distribution of a single PMT� The position�independent ADC gives a value

that depends primarily on the amount of light produced�

A position�independent TDC value is useful since it greatly reduces e
ects related

to the travel time of light through the scintillator to the PMT� This e
ect broadens

the TDC distribution of a single PMT� The position�independent TDC value gives a

value that depends primarily on the TOF of the particle that hit the scintillator�

These position�independent ADC and TDC values will be labeled hADCi and

hTDCi throughout these analyses� They are de�ned as�

hADCi � p
ADC� �ADC��

and

hTDCi � �TDC� � TDC�����

where� for each slat� ADC� and TDC� refer to data from the top PMT� and ADC�

and TDC� refer to data from the bottom PMT� A more thorough explanation of these

de�nitions is given in Appendix A�

One is interested in pedestal subtracted hADCi distributions that have been scaled

so the MIP peak is at one� This is convenient since it allows one to de�ne a scaled

hADCi range where single MIPs hit� where two MIPs hit� etc� The location of the

MIP peak in an ADC distribution for a PMT is� in general� di
erent for di
erent

PMTs� Even though two PMTs may produce pulses with the same peak amplitudes�

the pulse shapes in general may be slightly di
erent� These di
erent pulse shapes thus

have di
erent areas and result in di
erent ADC values� The MIP peak location also
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depends on the ADC module and the pedestal� It is thus worthwhile to investigate

methods to estimate the MIP peak from the ADC data from each PMT�

The following four methods to estimate this peak were investigated�

� mean� the mean of the ADC data is used to estimate the ADC location of the

single MIP peak�

� maximum bin location� for a histogram of the ADC data� the location of the

bin with the most counts is used to estimate the location of the single MIP peak�

� function �t� the ADC data histogram is �t with the function

f�ADC� � a�exp��b�ADC���c� exp��b�ADC��c���

where a�b� and c are �t parameters determined by minimizing the �� of the �t� The

location of the function$s peak is at b�c�ln���� the width of this function is related to

the �t parameter c� and the �t parameter a gives the normalization�

� limited range function �t� a histogram of the ADC data is �t with the same

function� but over a limited range� The range is ���� to ���� of the location determined

by the �maximum bin location� method�

Figure �� shows a typical ADC distribution with estimates of the peak location

for the four di
erent methods� For this particular PMT� the high ADC value tail

in the ADC distribution causes the �mean� method to overestimate the location of

the peak� The �function �t� method underestimates the peak location since the

�t is in�uenced by ADC data not just in the region of the peak� The �maximum

bin location� method estimates the peak location accurately in this case� but this
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Pedestal mean subtracted ADC distribution, 20000 events
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Figure ��� A typical pedestal subtracted ADC distribution for a slat in the
Au run� Estimates of the MIP peak location using the four di
erent methods
are noted in the plot�

method is not ideal method for locating the MIP peak since it is sensitive to bin�to�

bin statistical �uctuations� The �limited range �t� method accurately estimates the

peak location� and unlike the �function �t� method� it has the advantage of �tting

the ADC data only in the region of the MIP peak�

With only one ADC distribution investigated� conclusions cannot be drawn for

analyzing the performance of the di
erent MIP peak location methods� For some
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scaled ADCs (pedestal subtracted), all top PMTs, run 342a, 10000 events
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Figure �
� This shows scaled ADC distributions over all holes for di
erent
peak location methods� In the top �gure� a single scale factor was used for
all the PMTs� In the other plots� a scale factor determined for each PMT
was used to scale the ADC values� The scale factor is supposed to set the
MIP peak to unity� The methods improve going down from the top �gure to
the bottom �gure� The best method has the smallest FWHM�most probable
value� which is the �limited range �t� method�

of the individual distributions� some methods may work better than others� For

example� the �mean� method and the �function �t� method may work well for an

ADC distribution with very small tails� Therefore� it is worthwhile to investigate how

the methods perform over all the TOF PMTs�

For a particular method� the gain scaled ADC distributions over all PMTs are

widened for each incorrect estimate of the individual ADC distribution peaks� The
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distribution of gain�scaled ADCs over all the top PMTs is shown in Figure �� for

the four di
erent methods� The top plot in Figure �� is an ADC distribution of all

�top� PMTs using a single scaling value for all of the individual ADC distributions�

The other four plots are ADC distributions of all the PMTs using scaling values

appropriate for each PMT� This plot indicates which of the four methods is best

for all of the PMTs� as the Full Width at Half Maximum �FWHM� divided by the

Most Probable Value �MPV� is minimal for the best scaling method� For the �ve

di
erent methods� the worst method is seen in the top plot and the best method is

seen in the bottom plot� The best method is the limited range gain �t� which has a

FWHM�MPV����	�� The next best method is the �function �t� method which has

FWHM�MPV�������

Shown in Figure �� are ADC distributions of the top and bottom PMTs of typical

slat �tted over the limited range as described above� The function �ts the data very

well and accurately estimates the MIP peak location�

The bottom plot in Figure �� shows the gain�scaled hADCi distribution� with

the MIP peak scaled to one� One also sees a peak near ��
 in Figure ��� which

corresponds to a pile�up of two MIPs� This slat is in the region hit by large numbers

of primary protons from central gold�gold collisions� This pile�up peak is not at ���

because the PMT response is nonlinear� which comes from running the bases above

their recommended maximum voltage to achieve the fastest possible rise times� The

location of the pile�up peak is consistent with that seen in E���� ��� For this slat�
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Gold run (run 342a), hole 110, 20000 events
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Figure ��� The ADC distributions for one slat in the gold run� The top two
plots are the pedestal subtracted ADC distributions for the top and bottom
PMTs� Each of these distributions is �t using the limited range �t method�
The �t for both of these distributions is drawn in the plots� The bottom plot
is the hADCi distribution after using the scale factors obtained from the top
two plots� The MIP peak is scaled to unity and the fractional resolution is
���!�

a fractional resolution of ���! is observed in the bottom plot in Figure ��� This is

consistent with the average��
! value observed over the entire McGill TOF detector

in E���� ���

The MIP locations determined by all four di
erent methods are stored in the TOF

calibration �le for public use� Even though the calibration data from the limited range
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�t method is the only one used for scaling the ADC values� the results from the other

methods are useful for recognizing problems with the system�

C� Slewing Corrections

The term slewing refers to the time�walk associated with particles that simulata�

neously hit a slat and which produce di
erent amplitude pulses within the PMTs�

The rise time of pulses generally depends on the pulse amplitude� Speci�cally� the

rise time decreases as the pulse amplitude increases� Since the measured time is de�

termined by when a pulse crosses a �xed discriminator threshold� particles that hit

a slat at the same time but produce di
erent amplitude pulses will result in di
erent

measured TDC values� The TDC value for a large pulse will be less than the TDC

value time for a smaller pulse even if their arrival times are exactly the same�
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Figure ��� A typical hTDCi vs� pedestal subtracted hADCi distribution
for a slat� The slewing e
ect is clearly seen� as the hADCi value increases� the
hTDCi value decreases�
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Rather than measure the pulse amplitudes� the ADCs are used in the following

slewing descriptions since they already roughly estimate the pulse amplitudes� The

slewing e
ect is clearly seen in Figure ��� Larger hADCi values result in smaller

measured hTDCi values� The slewing e
ect can be corrected as now described�

This correction is done on unscaled pedestal subtracted hADCi data and raw

hTDCi data� Commonly� the slewing is assumed to be either a ��hADCi or ��
q
hADCi

dependence� ���� where the hADCi is the pedestal subtracted value� The functions

hTDCi �t��c�
q
hADCi and hTDCi � t��c�hADCi are �t to the hTDCi vs� hADCi

data for each slat� with t� and c as �t constants to be determined for each slat� The

two plots in Figure �� show these �ts for one slat in the gold run for the two slew�

ing forms� In the ��
q
hADCi �t shown in the left plot of Figure ��� the number of

Degrees Of Freedom �DOF� is �� and ���DOF������ A ���DOF���
 with DOF���

is obtained from the ��hADCi �t shown in the right plot of Figure ���

Gold run (run 342a), hole 110, 20000 events
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Figure ��� The �t of the average hTDCi versus the hADCi for the two
functional forms for the slewing� The error bars are the errors in the mean�
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Depending on which slewing form is used� the slew corrected hTDCi is either

hTDCi � hTDCimeasured � c�hADCi or hTDCi � hTDCimeasured � c�
q
hADCi�

Figure �
 shows the hTDCi distributions for a slat from the gold run before and

after the slew corrections for both slewing forms� The results show minimal di
er�

ences between the two di
erent slewing corrections� The hTDCi distributions become

���! narrower after the slew corrections� With the ADC time dependence removed�

the width of the distribution now depends on the time spread of particles that hit

the slats �which depends on the variations in path length and momenta�� the Fastbus

TDC noise �described in section IV�� and the time resolution of the TOF detector

and beam counters �which provide the start time for each event��

Shown in Figure �� are the hTDCi vs� hADCi distributions from the secondary

beam run� Two separate hTDCi vs� hADCi distributions are observed for the protons

and pions� with the pions having the lower hTDCi values� A cut to separate these

two distributions is shown in the top left plot of Figure ��� The hTDCi vs� hADCi

data of the pions and protons are then separately �t with the two di
erent slew

functions� The two plots in Figure �� show these �ts for one slat for the two slewing

forms� In the bottom left plot� the �t for the pions has a ���DOF���� and the �t

for the protons has a ���DOF����� In the bottom right plot� the slew �ts result in

a ���DOF���� for the pions and ���DOF���� for the protons� In all of these four

�ts� DOF����
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Gold run (run 342a), hole 110, 20000 events
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Figure ��� hTDCi distributions from one slat in the gold run� The top plot
is a raw hTDCi distribution� and the two bottom plots show the same hTDCi
distribution after slew corrections using the two di
erent functional forms�
Before slew correcting� the hTDCi width in the top plot is ���� channels� The
width of each slew corrected hTDCi distribution is ���! narrower� or on the
order of 	�� channels�

Using data from the secondary beam run� Figure �� shows hTDCi distributions for

a single slat before and after slew corrections� In each of the three plots� two separate

hTDCi peaks corresponding to protons and positive pions are observed� In the bottom

two plots� the slew corrected hTDCi values are shown for the two slew correction
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Hole 98, run 1102, 20000 events
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Figure ��� hTDCi vs� hADCi distributions for one slat from the secondary
beam run� Two separate distributions corresponding to protons and positive
pions are observed� A cut to separate these particles is shown in the top
left �gure� The top right �gure shows the hTDCi vs� hADCi in a pro�le
histogram for the protons and pions separately using this cut� Fits of these
separate distributions are shown in the bottom two plots for the two di
erent
slewing functional forms�

forms� The two corrections result in similar distribution widths� approximately ��!

to ��! narrower for this slat�

For this run� if one assumes there are minimal variations of the path length of par�

ticles that hit a single slat� the width of the hTDCi distribution can then attributed

to the time spread of particles �from the momentum spread only� hitting a slat� the

Fastbus TDC noise� and the time resolution of the beam counters and TOF slat�

Accounting for the time e
ects of the momentum spread and noisy Fastbus TDCs�
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Hole 98, run 1102, 20000 events
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Figure ��� hTDCi distributions from the secondary beam run before and
after separate slew corrections for the protons and positive pions� The two
bottom plots show slew corrected hTDCi for two di
erent slewing functional
forms� The slew corrections make the hTDCi distributions ��! to ��! nar�
rower�

an intrinsic time resolution for the system can be estimated from simulations� as now

described�

Using the hTDCi distributions for the protons and pions� an estimate of the time

resolution of TOF hole 	� can be made� With a �����m estimate of the path length

of the beam from the beam counters to TOF hole 	�� a ���� GeV�c momentum is

estimated using the ��� channel TDC peak separation �������ns� of the protons and

pions shown in Figure ��� Preliminary results from DDC tracking software indicate

the beam momentum spread is ���! of the mean momentum� Using a �������

GeV�c beam momentum� a Geant simulation was done to track pions and protons
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over this �ight path from the beam counters to hole 	�� Included in this simulation

was the typical measured ��� channel ���ps�channel� RMS noise from the Fastbus

TDCs �which was measured as ��� channels� described in Section IV�

Simulated proton/pion time separation versus actual data, hole 98

Peak separation = 50.8 +/- 1.0
σπ = 3.9 +/- 0.4
σp = 9.2 +/- 1.3

Flight path = 17.0m
Beam momentum = 4.5 GeV/c
Beam momentum σ = 0.40 GeV/c
Fastbus noise σ = 4.0 channels
TDC offset = 1624.0 channels

Geant simulated proton/pion
time separation

Peak separation = 47.2 +/- 1.0
σπ = 9.7 +/- 0.3
σp = 10.8 +/- 0.4

Data from run 1102, 20000 events
1/sqrt(ADC) slew corrected TDC
distribution

‹TDC› (channels)

co
un

ts

Figure ��� TDC distributions� The top plot shows simulated TDC data and
the bottom plot shows slew corrected TDC distributions from the secondary
beam run� For the pion TDC distribution� the width of the simulated data is
��	���� channels while that of the actual data is 	������ channels� For the
protons� the width of the simulated data is 	������ channels and the width of
the slew corrected time distribution is �������� channels�

Figure �	 shows a slew corrected TDC distribution for hole 	�� The upper plot

shows the results of the simulated data and the lower plot shows the actual slew cor�

rected data� The simulated TDC data includes the e
ects of momentum spread and

TDC noise� The di
erence in the simulated distribution and the actual distribution is
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attributed to the time resolution of the beam counters and the TOF slat� This di
er�

ence can be calculated in quadrature since the errors are independent� Thus for the

pions� the time resolution is ��
p
	��� � ��	� � ��	 channels� which is approximately

����� ps� For the protons� the time resolution is ��
p
����� � 	��� � ��� channels� or

����� ps� Since the time resolution of the protons and pions di
er so greatly� there is

a discrepancy which will be investigated as now described�

To understand the interplay of path length variations and momentum variations

on the observed TOF widths� an intrinsic time resolution of ���ps for the TOF slat

and the beam counters is assumed� Removing this ���ps �� channel� contribution in

quadrature from the observed slew corrected TDC distributions� ��	���� channels and

	������ channels are obtained for the pions and protons� respectively� The variation

in momenta and path lengths consistent with these values will now be determined�

Using a Monte Carlo approach� the momenta and path lengths of pions and pro�

tons were independently varied and time distributions were obtained using the equa�

tion TOF � �d�c��
q
� �m��p�� For the pions� using an unrealistically large momen�

tum variation of ��� GeV�c and ���cm path length variation� the width of the time

distribution is very small ������ channels� compared to ��	 ���� channels calculated

above� This implies that the momentum variation alone contributes only a small

amount to the time spread observed for the pions� Using a ���� GeV�c momentum

spread and a �cm path length variation� a time spread of ��������� channels is ob�

served� Using the ���� GeV�c momentum spread but a 
cm path length variation�
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����	���� is observed� Using a slightly larger length variation of ���cm� a ��	������

is observed with a ���� GeV�c momentum spread� Given the insensitivity of the time

distribution to the momentum spread of the pions� it is unknown how large the mo�

mentum spread actually is� Nevertheless� using the 
cm path length variation and

the estimated ���� GeV�c momentum variance produces a time variation consistent

with the ��	���� channel value calculated above�

For the protons� �rst ignoring path length variations� and using the expected ����

GeV�c momentum variance� a 	������ channel variation is obtained� At ���cm path

length variance and ���� GeV�c momentum variance� a 	������ channel variation is

obtained� To investigate the sensitivity of the proton time distribution on momentum

variance� a ��	 GeV�c is assumed with ��� cm length variance� This results in a

�������
 channel variation� which is too wide for the 	������ value calculated above�

These studies show the proton time distribution is very sensitive to both the variance

in the momentum and the variance in the path length�� A �cm to �cm path length

variance and ���� GeV�c momentum variance gives a time distribution consistent

with the 	������ channel calculated value�

Summarizing these results� the time spread of the pions cannot be explained from

momentum variance alone� The width of the pion TDC distribution is primarily

determined by path length variance� By comparing the time spread of the actual

TDC distribution �with the contributions from the Fastbus noise and intrinsic time

�Protons are more sensitive to momentum spread than pions because of their higher mass� The mass
determines how important the term m��p� is in the equation TOF � �d�c��

p
� �m��p��
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resolution of the TOF detector and beam counters removed in quadrature� to Monte

Carlo generated distributions� A 
cm path length variance was determined for the

pions using the estimated ���� GeV�c momentum variance� Unlike the pions� the

time spread of the protons is sensitive to both momentum variance and path length

variance� Using the estimated ���� GeV�c momentum variance for the protons� a

path length variance of less than �cm was determined� The discrepancy described

above can be explained by a di
erence in path length variance between pions and

protons in the secondary beam�

The possible di
erences in momenta variance and path length variance between

pions and protons are interesting questions that will be answered in the next data

set� That data set will be free of the correlated noise and Fastbus TDC noise� just

to name some improvements that will be made for the next run� as discussed in the

�nal section of this Thesis�

VI� Conclusions and Outlook

E�	
 is an experiment designed to search for weak decays of the H� dibaryon� The

design of E�	
 also allows for the studies of other strange neutral particles that de�

cay weakly� such as � and � hyperons and K�
s mesons� There are many signi�cant

backgrounds for reconstructing these particles based on tracking alone� A TOF de�

tector greatly decreases these backgrounds by providing direct PID of these decay

daughters� This motivated the design of a TOF detector using simulations�
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The optimal TOF detector geometry was found among several options and some

number of contraints that would be sensitive to the daughters of the H�� �� �� and

K�
s� Rates were given for identifying these daughters for three cuts using simulated

data from the TOF detector�

Based on these simulations� a large� highly granular existing detector was posi�

tioned as the central TOF detector� Extensive work disassembing this central wall

was done before before positioning it� In its �nal position� that wall was rebuilt so to

minimize scattering of particles into the MUFFINs detector located downstream of

the TOF detectors� Two side wall TOF detectors were built at Rice� These aluminum

unistrut supported detectors were subsequently positioned according to the optimal

simulated TOF detector geometry� The central wall was in the data stream for the

�		� gold beam run and all three TOF walls were in the data stream for the �		�

charge one secondary beam run�

The data shows there is signi�cant correlated noise throughout the experiment�

Plans to minimize this problem are discussed in the next section�

Methods to estimate the location of the MIP peak were discussed� These methods

were �rst investigated for an individual PMT� They were then investigated over all

the TOF detector PMTs� The �limited range �t� method was found to be the best

method�

Two di
erent methods to slew correct the TDC data were discussed� Two slew�

ing functional forms were �t to the TDC vs� ADC data to obtain slew correction
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parameters� Using these parameters� the slew corrected TDC distributions for both

methods were given� Both methods result in similar slew corrected TDC distribution

widths�

Pions and protons are observed in the data from the secondary beam run� For

a single slat� separate slew �ts of the pions and protons were done on the TDC vs�

ADC data� The TDC data was for pions and protons were then individually slew

corrected�

A Geant simulation was done to determine the width of the TDC distribu�

tions from the momentum spread of the beam and noise from the Fastbus TDCs�

Comparing the simulated TDC data to the observed TDC data� a time resolution

was given for one of the the slats with the beam counter resolution included� Since

the time resolution of protons and pions were very di
erent� the e
ects of path length

variation were instigated with a monte carlo approach� It showed that the width of

the pion distribution was primarily determined by path length variations� The width

of the proton distribution was primarily determined by both momentum variations

and path length variations�

A� Joblist

Plans to improve the TOF detectors for the spring �		� gold beam run are now

discussed� The Rice walls will be refurbished before the �		� gold run� Speci�cally�

the PMT and base junctions will be improved� the PMTs will be reglued to the slats�

and the slats will be rewrapped with Tyvek instead of aluminum� Tyvek is more
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re�ective than aluminum and is expected to increase the light output of each slat by

���!� �	�

It is suspected that the noise in the TDCs is related to the way the TOF DAQ is

setup� The DAQ software will be rewritten and tested before the �		� gold run�

In the �		� gold run and �		� secondary beam run� the beam counter signals were

recorded in the MUFFINs Fastbus DAQ system� During the �		� gold run� the beam

counter signals will be input to each TOF Fastbus TDC to reduce noise variations

among di
erent Fastbus modules�

The time calibration of the Fastbus LeCroy ����A TDCs will be done several times

during the �		� gold run using an Ortec ��� time calibrator� A time calibration is

required since one TDC channel� in general� does not equal ��ps�count� as quoted by

the manufacturer� The time per channel depends on temperature� the TDC module

used� etc� It is thus worthwhile to time calibrate all the TDCs many times during

the upcoming beam run to account for these variations�

Problems were seen in current cable map� The cable map determines which PMT

is connected to which ADC channel and TDC channel� There are a few mismatched

cables that will be corrected� This will done using a radioactive source at the TOF

detectors and online data monitoring programs� The source will be placed next to a

single slat to make its PMTs ��re�� Relating the hit PMTs to their ADC and TDC

channels can be done easily with this method�
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A 
�Hz scalar will be used to monitor the phase of the AC line to subtract the

correlated noise� It is currently being built at Rice University� Sources of correlated

of noise will also be thoroughly investigated� All electronics in the experiment will

be turned on one at a time while monitoring the ground with an oscilloscope�

Time o
sets will be monitored closely throughout the duration of the �		� gold

beam run� O
sets can change from radiation damage in the slat scintillators or

temperature changes� These o
sets will be obtained by comparing the calculated

TOF to the measured TOF for known particles� To do this� software that extrapolates

tracks from the target to the TOF wall is used�

Appendix A� Position�independent ADCs and TDCs

There are three things important to understanding position�independence�

�� the amount of light produced by a particle that travels through the scintillator�

�� the light is attentuated exponentially as it travels down the slat to the PMT�

This was observed for the central wall slats in E���� ���

�� the measured TOF includes the time of travel of light through the scintillator

to the PMT�

The following position�independent values are used�

hADCi � p
ADC� �ADC��

and

hTDCi � �TDC� � TDC�����
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where ADC� and TDC� refer to the top PMT� and ADC� and TDC� refer to the

bottom PMT for each slat� If L� is the distance from the slat hit to the top PMT�

and L� is the distance from the slat hit to the bottom PMT� then L��L� is the length

L of the slat� For a scintillator with attenuation length a� the geometric mean of the

top and bottom ADC values is given by�

ADC� � C� � exp��L��a� and ADC� � C� � exp��L��a�

hADCi � p
ADC� �ADC� �

q
C� � C� � exp���L� � L���a�

hADCi �
q
C� � C� � exp��L�a�

This ADC de�nition is independent of the hit position and only depends on the

amount of light produced�

The speed of light travels down the slat according to the index of refraction and

according to the geometry of the slat� An e
ective velocity hvi �which has to be

measured� has to be used in calculations since the light bounces o
 the slat walls as

it travels to a PMT� E��� measured an average hvi of ���� cm�ns� ���

TDC� � TOF � L��hvi and TDC� � TOF � L��hvi

hTDCi � �TDC� � TDC���� � TOF � �L��L����hvi

hTDCi � TOF � L��hvi

Now L��hvi is just a constant which contributes to the time o
set� Therefore� the

arithmetic average of the top and bottom TDC values of a slat is independent of the

hit position on the slat�
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