

Review][Outline:

W.J. Llope for the TOFp Group
 Rice University
 October 7, 1999 (BNL)

Brief reminder of motivation for TOFp... system as proposed...

In-tray Component R\&D and SysTest-I
 charge: build everything inside the tray, connect it appropriately, and

 show how well it works under realistic conditions- Cabling
- Voltage System
- FEE
- Controls

Tray mechanical aspects...
Installation...
Test Procedures...
Calibration...
pVPD...
Interfaces...
Cost, Schedule, and Manpower...

Implementation Plan...
Requirements Document...

regions of lower efficiency \& larger BGs...
$\pi \quad \sim 0.5<\mathrm{P}<0.75 \mathrm{GeV} / \mathrm{c}$
$\mathrm{K} \quad \sim 0.5<\mathrm{P}<0.9 \mathrm{GeV} / \mathrm{c}$
$\mathrm{p} \quad \mathrm{P} \sim 1 \quad \mathrm{GeV} / \mathrm{c}$
TPC/RICH PID "matching" possible, but with relatively larger uncertainties...
K kinks are important for spectra!
but not the same tracks as ID'd in RICH, so no PID matching possible...
can compare to TPC <dE/dx>, but necessarily at smaller Nhits...
not possible for protons, perhaps possible for pions...

TOF bridges the inefficient regions in PID acceptance... for TPC and SVT dE/dx, and for RICH rings, TOF PID can be used for "evaluation" to optimize algorithms, calibrations, cuts, ...
2d plots of PID information track by track - better cuts, lower backgrounds complementary to embed/eval simulations...

open cuits... (Nhits>10, $\chi 2 /$ Nhits <2.5) not requiring track has a hit in TPC pad row 45...

Single particle spectra

Expansion, thermalization...
Flow via fragments...
Rapidity spectra... net protons... asymmetries...
Onset of High-Pt, mini-jets, parton $\mathrm{dE} / \mathrm{dx}, \ldots$
Ratios, e.g. $\mathrm{K}+/ \mathrm{K}-, \mathrm{p} / \overline{\mathrm{p}}, \mathrm{d} / \mathrm{d}, \ldots$

Event-by-Event Observables

Direct PID on both legs of ϕ, Ψ, \ldots, decays...

Is there an inexpensive approach to get at most of this?
Punt on formation of E-by-E observables...
Punt on "two-leg" ϕ, Ψ, \ldots reconstruction...
Concentrate on:
Tieing together the PID...
(TPC dE/dx, SVT dE/dx, RICH)...
ratios...
dN/dPt...
dN/dy.
for directly-identified π, K, p, d, \ldots
in centrality and other EbyE-based event samples...

Interferometry out to $\sim 1.5 \mathrm{GeV} / \mathrm{c}$ (not simulated yet)

Sperp from R and C Spar from PV and Ztof $S=$ Sperp \oplus Spar
ϕ at TOF
(track-slat matching)

Z at TOF

(matching + propagation delay)

TOFp as described in the proposal...

$2 \times 4 \times 22 \mathrm{~cm}$ Bicron BC420

from test beam tests (in 0.5 T field)
50 ps at near end
75 ps at far end
$80.2 \mathrm{ps} / \mathrm{cm}$ propagation delay
"clean" π, K, p separation $<\sim 1.8 \mathrm{GeV} / \mathrm{c}$
PMTs
Bases

Tray
"clean" $\pi / \mathrm{K}, \mathrm{p}$ separation $<\sim 3 \mathrm{GeV} / \mathrm{c}$
In-tray electronics...

SysTest-I

Review-II
(October 7, 1999)
\rightarrow SysTest-I Focus:

- Measure performance of signal cables
- Produce Voltage system and measure performance
- Produce final FEE from existing prototypes and measure performance
- Measure tray+cable system performance up to CAMAC Backplane

Some notes:
Four slat assemblies built and studied, parts for 2 more, R5946's left over from CTB...
LE discrimination in-tray proposed, hence LE the primary focus of the FEE R\&D...
but we also completed several product cycles for CF discriminators...
Monster pulses on the "start" detector...
Start PMT was an RCA 8575, although others tried as well, including an R5946...
TDC distributions expressed in 'TDC channels' in some plots - conversion is $50 \mathrm{ps} / \mathrm{ch}$.

SysTest-I Schematic (shown as proposed 4/22/99)

Also on hand: Discriminators ADC/TDC Scopes

P/S 704 (4), 715 ... LRS 621BL and 623B ... Ortec 934cfd ... P/S 706 (∞) LRS 2249A (4), 2228A (2), 2228 (3) ... P/S 7186 (2), P/S 7186H (3)
HP Infinium (1.5 GHz, 8 GS/s) \& Tektronix TDS640A (500 MHz, $2 \mathrm{GS} / \mathrm{s}$)

HP Infinium

$8 \mathrm{Gs} / \mathrm{s}$
1.5 GHz
$\sim 12 \mathrm{ps}$ time resolution accurate direct measurements... cross check of CAMAC DAQ...

two precision waveform generators... attenuation \& cross talk... important "baseline" tests...

Ambient Temperature Tests...

Ambient Magnetic Field Tests...

Nitrogentaser

Laser Science, Inc. introduced the first VSL-337 nitrogen laser in 1983. The laser features our patented sealed plasma cartridge, that eliminates the need for flowing nitrogen gas. Further, the VSL-337 laser is air cooled so the plumbing and expense associated with flowing water for chilling are avoided. While product improvements have been made over the years, the current VSL-337 is still the smallest and lowest priced pulsed nitrogen laser on the market. With over fifteen hundred VSL-337 nitrogen lasers in the field, it has
 become a standard in research and teaching.
Performance. The VSL- 337 nitrogen laser provides 4 nsec pulses at 337 nm in the UV with a pulse energy of $120 \mu \mathrm{~J}$. Peak power is 30 kW and the average power is 2.4 mW at 20 Hz . The pulse repetition rate can be varied from 1 to 20 Hz . The laser can be triggered either internally or externally with a TTL trigger pulse. Reliable firing allows the laser to be synchronized to other timed events. Constant pulse shape and good pulse to pulse stability were designed into the VSL-337 with our fixed electrode and discharge stabilizing preionizers.

Turnkey Operation. No alignment is necessary as the resonator mirrors are mounted on the plasma cartridge and aligned in the factory. No gas or cooling connections are needed. No warm-up time is required. The user simply plugs in the VSL-337 nitrogen laser, turns it on, and starts collecting data. The first pulse is a good pulse.
Modular Design. The polymer encapsulated plasma cartridge module includes all the components which deteriorate over time. That is, the field replaceable unit incorporates the energy storage capacitors, the switching element, the plasma tube with prealigned resonator mirrors, the electrodes, and the preionizers. Once replaced, the user regains the performance of a new laser!
Long Life. The plasma cartridge is warranted to maintain at least 70% of its energy for twenty million pulses or two years, whichever occurs first.
Options. The VSL-337 is powered by a small external power supply. Alternatively it can be powered by a 12 volt battery, making it ideal for field applications. When very low RFI is a requirement, the VSL-337 can be fitted with a shielded housing. We supply fixed frequency and tunable dye laser modules for pulsed visible laser light, detectors, fiber optics, and laser to microscope adapters for a variety of microbeam experiments.

Specifications*

Part Number	$337000-00$ for $110 \mathrm{v}, 337000-01$ for 220 v
Wavelength	337.1 nm
Spectral Bandwidth	0.1 nm
Repetition Rate	1 to 20 Hz
Pulse Width, FWHM	4 nsec
Pulse Energy	$>120 \mu \mathrm{~J}$
Pulse to Pulse Energy Stability	$\leq 4 \%$ std. dev.
Peak Power	30 kW
Average Power	2.4 mW at 20 Hz
Beam Size	$3 \times 7 \mathrm{~mm}$
Beam Divergence, Full Angle	$5 \times 8 \mathrm{mrad}$
External Trigger Input	TTL, rising edge
Jitter	$\leq 40 \mathrm{nsec}$ std. dev.
Power Consumption	1.6 A average; 3.2 A peak at $20 \mathrm{~Hz}, 12$
VDC	
Dimensions, l x w x h	$10.6 \times 4.6 \times 2.7 \mathrm{in} ; 27.0 \times 11.7 \times 6.9 \mathrm{~cm}$
Weight	$5 \mathrm{lbs} ; 2.3 \mathrm{~kg}$

the Laser takes hours to warm up...

...always allowed several hours for laser to settle before collecting any data, ...then take data as efficiently as possible
\rightarrow by now well-determined efficient test procedures are all established...

Cabling

long signal cables are necessary given path distance between tray and platform and for delay. there is also cabling inside the tray.
with appropriate choice of attenuation spec, coaxial cable is the best delay one can get:

$$
\begin{array}{lll}
\text { delay/RT ratio: } & \text { best electronic delay: } & \sim \mathbf{2 0 : 1} \text { or worse.... } \\
& \text { standard RG58: } & \sim \mathbf{6 0 : 1} \text { or better... }
\end{array}
$$

250-350 ft of $\beta=0.66$ coaxial signal cable, e.g. the RG-58 series, provides the needed delay.
A smaller diameter coaxial ribbon cable, "Flat Coax" (Amphenol Spectra-Strip), was discussed in the proposal, in case space for TOFp cable routing in-tray and out to the platform is tight.
H. Matis notes at the videocon review that there is space for RG-58, but path isn't yet quantified...

How are specific signals are affected by 250 ft of a given cable type?
In:

Pulser Sine wave
Pulser "square" wave
TOFp logic signals
TOFp PMT signals
Study:
Amplitude Attenuation
Rise Time Attenuation
Amplitude Cross Talk
Timing Cross Talk
For:
RG-58 C/U, $50 \Omega, 250 \mathrm{ft}$.
FlatCoax, 93Ω, 4ch wide, 250 ft .
(-400 mV, frequency in the range $0.1-20 \mathrm{MHz}$)
($-800 \mathrm{mV}, \mathrm{RT}>2 \mathrm{~ns}, 10-100 \mathrm{~ns}$ wide)
(-800 mV , RT from <1 to $\sim 2.5 \mathrm{~ns}, 10-100 \mathrm{~ns}$ wide)
(-500 mV, RT~3-5 ns, FWHM~10ns, typical R5946 line shape)
(generally irrelevant)
(very relevant)
(relevant)
(very relevant)
(the proven standard cable, but C / U is not the best RG-58 out there...)

50 Ohm Transmission Cable
RG-58 C/U QPL
20 AWG

1-800-BELDEN-1

Trade Number Industry Stds.	Std. Lgth. (ft.)	Std. Units (lbs.	AWG (strand) Type (dia.) Nom. D.C.R.	Coreo.D. Nom. O.D.	Shields Nom. D.C.R.	Nom. Imp. (ohms)	$\begin{gathered} \text { Vel. } \\ \text { of } \\ \text { Prop. } \end{gathered}$	Nom. Cap.
8262	$\begin{array}{r} \mathrm{U}-500 \\ 500 \\ \mathrm{U}-1000 \\ 1000 \end{array}$	$\begin{aligned} & 13.3 \\ & 14.9 \\ & 26.5 \\ & 26.3 \end{aligned}$	$\begin{aligned} & 20(19 \times 3.3) \\ & \text { TC } 0.035 \mathrm{n} \\ & 10.8 \text { ohms } / \mathrm{m} . \end{aligned}$	$\begin{aligned} & 0.116 \mathrm{in} . \\ & 0.195 \mathrm{in} . \end{aligned}$	95\% TC Braid Inner 4.1 ohms/m'	50.0	66.0%	$30.8 \mathrm{pF} / \mathrm{f}$
Metric	$\begin{gathered} \text { (Meters) } \\ \text { U-152.4 } \\ 152.4 \\ \text { U-304.9 } \\ 304.9 \end{gathered}$	$\begin{array}{r} (\mathrm{Kg}) \\ 6.05 \\ 6.4 \\ 12.0 \\ 12.0 \end{array}$	$\begin{gathered} .889 \mathrm{~mm} \\ 35.4 \circ \mathrm{hms} / \mathrm{km} \end{gathered}$	$\begin{aligned} & 2.946 \mathrm{~mm} \\ & 4.953 \mathrm{~mm} \end{aligned}$	Inner 13.4 ohms/km			$101.0 \mathrm{pF} / \mathrm{m}$

- Top
(Select other related products with BACK or PREVIOUS.)

Home Page

Return to Belden's Home Page

Copyright © 1999 Belden Wire \& Cable Company

Amphenol FlatCoax

discussed in proposal as an option for the long cables...

Spectra-Strip ${ }^{\circledR}$
 Electronic Cable
 online catalog Amphenol

Searches

Information

new product information
cable
assembly

process
 info request

email

Part Information I Outline Drawing I Introduction I Specifications I Ordering Information

TOP
 Part Information:

Part Number: 121-3001-002
Description: . 100 pitch flat coax, 93 ohm

Family: Flat Coax

fidd to Information Request

TOP

Introduction

Spectra-Coax planar cable is coaxial cable that can be mass terminated. Used in high speed computers and other digital equipment, coax planar cable combines economy of time and money through reliability, space and labor savings. Manufactured with controlled signal to signal centers, Spectra-Coax cable consists of individual solid conductors, each with foamed or solid polypropylene insulation, a foil shield, and an oriented drain wire. An extruded contoured outer jacket allows mass termination or separation and stripping of conductors. This standard flat cable can be cut to any length and still maintain controlled centers.

Physical	
Center conductor	30 Awg solid copper, enamel coated
Dielectric	Foamed polypropylene
Diameter	$.064^{\prime \prime} \pm .002^{\prime \prime}$
Drain Wire	28 Awg solid tinned copper
Shield	Longitudinally wrapped aluminum /polyester foil
Jacket	Red PVC, .017" nom wall
Conductor Spacing	$.100^{\prime \prime} \pm .009^{\prime \prime}$
Cable Thickness	$.100 "$ nom

Electrical	
Impedance	$93 \pm 5 \mathrm{ohms}$
Capacitance	$14.2 \mathrm{pf} / \mathrm{ft}$ nom
Crosstalk	$<.1 \% \mathrm{NE}$ and FE, unbalanced, 10 ft cable Iength. Risetime 3 ns
Propagation delay	$1.35 \mathrm{~ns} / \mathrm{ft} \mathrm{nom}$
Risetime Degradation	$<350 \mathrm{ps} / 10 \mathrm{ft} \mathrm{(20} \mathrm{-} \mathrm{80} \mathrm{\%)}$
Attenuation	$6 \mathrm{~dB} / 100 \mathrm{ft} \mathrm{nom} \mathrm{@} 100 \mathrm{MHz}$
UL Style	2741

TOP

Ordering Information

Part Number	No. Conds.	With "A"		With "B"	
		Inch	(mm)	Inch	(mm)
$121-3001-002$	2	.200	(05.08)	.100	(02.54)
$121-3001-003$	3	.300	(07.62)	.200	(05.08)
$121-3001-004$	4	.400	(10.16)	.300	(07.62)
$121-3001-005$	5	.500	(12.70)	.400	(10.16)
$121-3001-006$	6	.600	(15.24)	.500	(12.70)
$121-3001-007$	7	.700	(17.78)	.600	(15.24)

Negligible difference in logic signal leading edges after 250 ft of RG58 or FlatCoax... shown are P/S 706 signals... also compared many other fast RT signals...

RG58 and Flat Coax must have similar attenuation (dB) vs. frequency (MHz) characteristics... with Amp FlatCoax apparently a shade worse in attenuation than RG-58C/U...

Direct measurements of $\lambda(\mathrm{dB})$ vs. $\omega(\mathrm{MHz}) \ldots$
Coaxial Cable Attenuation
Sine wave attenuation
Range $0.1-20 \mathrm{MHz}$
Measured
$\quad 250 \mathrm{ft}$ RG58C/U
250ft Flat Coax
Plot equiv. 100ft of cable

Yes, the attenuation performance is similar... Good agreement with tabulations for RG58...
Belden FlatCoax not nearly as good as Amphenol's...

Signal propagation simulations...

$$
\begin{gather*}
\alpha^{*}(f, Z)=\left[c_{0}+c_{1} \sqrt{2 i f}+c_{2} f\right]_{Z} \tag{1}\\
\mathcal{R}\left(\alpha^{*}\right)=\frac{\operatorname{LOG}(10)}{20} \lambda(d B) \tag{2}
\end{gather*}
$$

where $c_{0}=R_{d c} / 2 Z$ and c_{1} and c_{2} are fit parameters for a given cable type, (e.g. RG-58, Flat coax) and length, Z.
$V_{\text {input }}(0, t)$ is an arbitrary voltage waveform

$$
\begin{gather*}
F_{\text {input }}^{*}(\omega)=\int_{-\infty}^{\infty} V_{\text {input }}(0, t) e^{-i \omega t} d t \tag{3}\\
F_{\text {output }}^{*}(Z, \omega)=F_{\text {input }}^{*}(\omega) e^{-\alpha^{*} Z} \tag{4}\\
(\omega=2 \pi f) \\
V_{\text {output }}(Z, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F_{\text {input }}^{*}(\omega) e^{i \omega t} e^{-\alpha^{*} Z} d \omega \tag{5}
\end{gather*}
$$

Amplitude Cross Talk...

250ft long FlatCoax, 4 wide... 250ft long pair of RG58C/U...

- at 20 MHz , FlatCoax cable amplitude cross talk for sine wave input is about 1%
- at same frequency, "RG58 pair" amplitude cross talk is a factor of 5-10 less.
(note though $0.1-20 \mathrm{MHz}$ is only a fraction of the relevant frequency range...)

Cable timing cross talk...

- use fast pulser with 2 logic-like outputs and control over exact Δt between the two..
- study cable propagation delay in channel X in different cases of a similar signal
in a neighboring cable channel Y at a controlled relative time...
- particularly simple job for the Infinium!

RG58C/U bundle

FlatCoax

time cross talk affects the propagation delay, not the dispersion... timing cross-talk seen was:

RG-58C/U bundle:
FlatCoax:
< 20ps...
~ 100ps for numerous pairs...

Dependence of cable performance on cable temperature...

Frequency (MHz)
RG-58 \rightarrow no dependence of performance on Temperature in range 22 to $52^{\circ} \mathrm{C}$ FlatCoax \rightarrow performance depends on Temperature...
...attenuation increases roughly $\sim 0.2 \mathrm{~dB}$ per 250 ft per $10^{\circ} \mathrm{C}$...
\rightarrow there are performance compromises if FlatCoax is chosen to be the long TOFp signal cables...
amplitude cross talk seen but tolerable... timing cross talk seen but excessive... dependence of attenuation on temperature...
recommendation for long signal cables is RG58/U, Belden 8240

- $\sim 18 \mathrm{~dB} / 100 \mathrm{~m}$ @ 200 MHz (note RG-58C/U used in SysTest-I is 23 dB !
- $\quad \mathrm{v}=0.66 \mathrm{c}$
- OD ~ 5mm
- Same cost...
- No external impedance matching needed...
- $\quad<0.2 \%$ amplitude cross talk
- $\quad<20$ ps or less timing cross talk

Amphenol FlatCoax appropriate inside tray ($<12 \mathrm{ft}$ runs) and perhaps for a small distance after that...
...total allowable length of FlatCoax is 25 ft ...

Cross sectional area needed for TOFp cable path...

eighty-two (82) RG-58/U, OD=5mm
one (1) 10ch 0.05 " pitch ribbon cable, HVSys bus
one (1) LV cable ($+/-5 \mathrm{~V},-2.2 \mathrm{~V}$)
thermocouple leads, depending on location...

TOFp cable path to be specified by integration group... lots of room?
shown here is not the end of STAR that TOFp goes into..

\bullet Contents - Profile - Sales • Trade \# - Technical Info - Exit

50 Ohm Transmission Cable
RG-58/U Type
20 AWG

Trade Number Industry Stds.	Std. Lgth. (ft.)	Std. Units (lbs.	AWG (strand) Type (dia.) Nom. D.C.R.	Coreo.D. Nom. O.D.	Shields Nom. D.C.R.		$\begin{aligned} & \text { Vel. } \\ & \text { of } \\ & \text { Prop. } \end{aligned}$	Nom. Cap.
$\begin{gathered} 8240 \\ \text { UL AWM: } 1354 \\ \text { NEC: CMX } \\ \text { CEC: CMX } \end{gathered}$	$\begin{array}{r} 50 \\ 100 \\ \mathrm{U}-500 \\ 500 \\ \mathrm{U}-1000 \\ 1000 \end{array}$	$\begin{array}{r} 1.7 \\ 2.9 \\ 13.4 \\ 14.1 \\ 26.0 \\ 26.6 \end{array}$	$\begin{array}{r} 20 \quad(\text { Soli } \\ \text { BC } \begin{array}{r} 0.033 \mathrm{n} \\ 10.0 \text { ohms } / \mathrm{m} \end{array} \end{array}$) $\begin{aligned} & 0.116 i n \\ & 0.193 i n\end{aligned}$	95\% TC Brai Inner 4.1 ohms/M'	51.5	66.0\%	$29.9 \mathrm{pF} / \mathrm{ft}$
Thilipanay								
Metric	$\begin{array}{r} \text { (Meters) } \\ 15.2 \\ 30.5 \\ \mathrm{U}-152.4 \\ 152.4 \\ \mathrm{U}-304.9 \\ 304.8 \end{array}$	$\begin{array}{r} (\mathrm{Kg}) \\ .77 \\ 1.3 \\ 6.1 \\ 6.4 \\ 11.8 \\ 12.8 \end{array}$	$\begin{gathered} .838 \mathrm{~mm} \\ 32.8 \mathrm{ohms} / \mathrm{km} \end{gathered}$	$\begin{aligned} & 2.946 \mathrm{~mm} \\ & 4.902 \mathrm{~mm} \end{aligned}$	Inner 13.4 ohms/km			$98.1 \mathrm{pF} / \mathrm{m}$

Description:		
Insulation:	Polyethylene	Brilliance® 50 Ohm, Transmission and Computer Cable. 20 AWG solid bare copper with polyethylene insulation. Tinned copper braid, 95\% shield coverage. Black Temperature Rating : $80^{\circ} \mathrm{C}$ Voltage Rating : 30 Volts (UL) Suggested Operating I Range (Non-UL): $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$. Maximum Operating Voltage (Non-UL): 1400 Vplts Military Specification : JAN-C-17A
Jacket:	PVC	
Plenum	88240	
Version(s) :	82240	

A Top
(Select other related products with BACK or PREVIOUS.)

[^0]Plenum Computer, Instrumentation and B-Cast Cable
Dual RG-59/U Type
23 AWG
Plenum

1-800-BELDEN-1

Trade Number Industry Stds.	Std. Lgth. (ft.)	Std. Units (lbs.	AWG (strand) Type (dia.) Nom. D.C.R.	Coreo.D. Nom. O.D.	Shields Nom. D.C.R.		$\begin{aligned} & \text { Vel. } \\ & \text { of } \\ & \text { Prop. } \end{aligned}$	Nom. Cap.
$\begin{aligned} & 89555 \\ & \text { NEC: CMP } \\ & \text { CEC: CMP } \end{aligned}$	$\begin{array}{r} 500 \\ 1000 \\ 2000 \end{array}$	$\begin{array}{r} 48.2 \\ 92.7 \\ 186.9 \end{array}$	$\begin{gathered} 23 \text { (Solid } \\ \text { BCCS } \begin{array}{c} 0.023 i n \\ 52.0 \text { ohms } / \mathrm{m} \end{array}, ~ \end{gathered}$	$\begin{aligned} & 0.134 i n \\ & 0.212 i n \end{aligned}$	97\% BC Brai Inner 2.6 ohms/M'	75.0	69.5\%	$19.5 \mathrm{pF} / \mathrm{ft}$
Metric	$\begin{gathered} \text { (Meters) } \\ 152.4 \\ 304.9 \\ 609.8 \end{gathered}$	$\begin{array}{r} (\mathrm{Kg}) \\ 21.91 \\ 42.1 \\ 84.5 \end{array}$	$\begin{array}{r} .584 \mathrm{~mm} \\ 170.6 \mathrm{hms} / \mathrm{km} \end{array}$	$\begin{aligned} & 3.403 \mathrm{~mm} \\ & 5.385 \mathrm{~mm} \end{aligned}$	Inner 8.5 ohms/km			$64.0 \mathrm{pF} / \mathrm{m}$

Description:		
Insulation:	FEP	Dual Plenum, Coaxial Computer, Instrumentation and Broadcast Cable. RG-59/U, 23 AT bare copper covered steel conductor with FEP insulation. Bare copper braid, 97\% c Clear FEP jacket. Zip Cord Construction Temperature Rating : $200^{\circ} \mathrm{C}$. Suggested Ope Temperature Range (Non-UL): $-70^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$. Maximum Operating Voltage (Non-UL): I Volts RMS. Spools and/or UnReel® cartons are one piece, but lengths may vary $\pm 10 \%$ length shown.
Jacket:	FEP	
Plenum Version(s):	n/a	

Attenuation		
Freq	Nom. Atten (dB/100ft) $)$	Nom. Atten $(\mathrm{dB} / 100 \mathrm{~m})$
1.0	0.5	1.64
10.0	1.0	3.28
50.0	2.3	7.54
100.0	3.7	12.1
200.0	5.4	17.7
400.0	8.4	27.5
700.0	11.6	38.0
900.0	13.8	45.2

- Top
(Select other related products with BACK or PREVIOUS.)

Home Page

Return to Belden's Home Page

Copyright © 1999 Belden Wire \& Cable Company

History of Rice CWs...

(note these were all developed for the CTB, not TOFp - there are considerably different reqs for the two!)

Voltage

TOFp proposal suggests Nick Adams’(Rice) version III CW bases simpler than previous versions, and stable on original schedule, would have been best approach
 the present schedule cannot afford this any more...

Commercial vendors contacted:
 EMCO
 Hamamatsu
 (declined to quote for our specs)
 (don't work in magnetic fields)

Valery Astakhov et al.
http://www.tsl.uu.se/~sukhanov/HVSys/Astakhov/welcome.htm

- simple control via System Module
- single bus for all cells in a tray
- cells are small
- power <0.5 W/cell, or <25 W/tray
- cost/cell $\sim 80 \$$, and can be produced quickly
- System Module ($2 \mathrm{k} \$$) already in hand
- DOS GUI or Terminal interface to control and read-back cells

06/04/99: began discussions with Valery...
06/09/99: agrees to make 6 cells on spec...
06/19/99: design specs for TOFp finalized...
07/04/99: TOFp cells complete...
07/05/99: cells carried to Dallas by a friend...
07/08/99: cells arrive at Rice...
since then the system has been kept on almost all the time...
~ 2 months of testing of 6 HVSys cells developed specifically for TOFp...

two thin boards...
thinner socket...
\rightarrow present TOFp gstar geometry file is too ponderous...
only connections are to HVSys bus and the signal output...
\rightarrow HDLC interface to the tray is no longer needed...

TOFp radiation and interaction lengths...
...recall results when (large \& dense) Rice v. 3 CW base was assumed...
(1cm plastic socket, 4 board perp to tray, Al shell)

The bumps in the eta view are the Rice v .3 bases...
These bumps are thus overestimates when one considers the much smaller size and mass of the HVSys cells...
...obviously I need to update btofgeo.g (~1hr)...

DAQ program

HIGZ window

DOS GUI for HVSys Control...

A

HVSys comes with scan and monitoring capabilities...

Cell 2 at branch 0 does not exist
OK
14% completed

HVSys

Usability:

Cells and system overall work exactly as expected...
Both control paths (terminal interface or DOS GUI) work...
HVSys voltage scale for each cell "calibrated" to resistive HV and Rice CW v.2...
No affect on ADC distributions compared to resistive HV bases...

Stability:

From HVSys readout: never greater than one count variation ($\sim 4.8 \mathrm{~V} /$ count)... No system crashes or resets ever seen when taking laser data...

Every night take 2500 cosmic events... Each weekend take 10000 cosmic events...
\rightarrow voltage stability from positions of peaks night to night...
\rightarrow run stability by checking cosmic count rate...

each cosmic run's data are now shown...
many early ones aren't quite right... (we were learning)

Rice CW v. 2 bases
Rice CW v. 2 bases

Rice CW v. 2 bases, voltage change 100 V

Rice CW v. 2 bases, reduced voltages

Rice CW v. 2 bases again

back to HVSys cells

HVSys cells, using new slat stand...
HVSys cells,voltage changes...

HVSys cells, voltage changes..

HVSys cells, voltage changes...

HVSys cells, slat ordering now 4,1,2,3 from top... HVSys cells, back to original stand...

HVSys cells, voltage changes..

0
0
0
0
0
0
0
0
0

HVSys cells, no change...

HVSys cells, no change...
HVSys cells, no change...

HVSys cells, voltage change...
HVSys cells, voltage change...

Stability results using cosmics...
no system crashes or resets seen... peaks stable to $<2 \%$

$\underset{y y y y}{*}$ ignoring v.2 CW runs and runs before V changes:			
slat	1	2	3
459.9	611.0	475.0	436.0
440.0	620.4	473.2	420.3
449.5	620.0	467.6	435.2
462.1	613.3	474.2	430.4
449.4	600.9	470.6	374.5
442.6	585.9	479.5	365.7
437.7	580.9	474.9	354.7
44.5	580.2	470.4	380.4
436.8	568.5	462.1	378.3

(still taking these data)...
the values of the voltage\&PH for the measured cosmic m.i.p.s

Slat	V
1	1600
2	1750
3	1800
4	1700

several options for appropriate filters (in splitter-box or on slat).
two transparencies, one printed at 80% gray and the other at 70% gray
Andover filter \#2...
in either case, the laser with the fiber in the slat center gives the same ADC value as for cosmics at the same hit position and PMT voltage...
...all laser results done at Edep equivalent to 1 m.i.p. to within $\sim 10 \%$...

Andover Corporation

Your	Company	Contact
Cart	Info	Us

Metallic Neutral Density Filters

General Specifications
 VIS-NIR transmitting
 UV-VIS-NIR transmitting

Abstract

Neutral density filters are very useful in a number of applications such as attenuators for broadband spectral sources, partial reflectors for light balancing applications and for use as neutral beamsplitters. Metallic type neutral density filters obtain their optical density by depositing a metal alloy coating onto a specific type of substrate which is determined by the wavelength region of interest. For the Andover standard metallic neutral density filters, the substrate is either optical grade glass or fused silica. Custom substrates are available and will be quoted upon request. Please contact one of our technical sales representatives for assistance. Unlike the all-dielectric or absorption type filters, the metallic type rely on a combination of absorption, reflection and transmission to obtain their proper optical density. Since these films are partially reflecting and absorbing, they will withstand more incident energy than the totally absorbing type; however, their maximum power density is still limited by the fact that they are partially absorbing. If one intends to use these filters as attenuators in laser systems, please check with a technical sales representative for the recommended maximum power density that these filters will withstand.

Optical density (D) is defined as the logarithm to the base 10 of the reciprocal of the transmitted radiant power (T):

$$
D=\log _{10} \frac{1}{T} \text { or } T=10^{-D}
$$

If the user requires a specific density that is not an Andover stock item, they may take advantage of the additive effect of these filters and use several filters in series. One must exercise caution in doing this because multiple reflections will occur and cause a reduction in the density value. To avoid this phenomenon, it is recommended that the filters be tilted slightly so that their films are not parallel to each other.

FEE Development...
as of late July, 1999 (BNL collab. mtg.):
FEE version II
LE, 2ch, RT~750ps (commercially, RT ~ 2.5 ns)

FEE version III (completed 7/22/99) CFD, 1ch
\rightarrow RT ~ 610ps
\rightarrow resolution $\sim 11 \mathrm{ps}$

Functional Description of TOFp FEE version IV
WJL, 7/6/99 (revised 7/23/99)

History:
v. I - 1ch, first breadboard
v. II - 2ch LE, RT~0.75ns
v. III - 1ch. first version of LE+CF
v. IV - 5ch LE w/ 2ch CFD

Thr = Pot for LED threshold
Tst $=$ Thres test point
Wid $=$ Pot for logic width

Produce 5 channels version IV board.
All chs have LE circuit, and 2 chs have additional CF circuitry. Produce two (2) such boards, for 10 ch total

Dimensions:

Board width to bolt onto TOFp cooling rails. Minimize length.

I/O specs:

LE thresholds individually adjustable from 50 mV to 1 V output rise time < 1ns, and minimized.
output fixed flat-top voltage, NIM standard -800 mV output widths individually adjustable in range 20ns to 100ns dead time $=100 \mathrm{~ns}$
provide board space and connections for input protection.

Connections:

5 lemo female on one side take 5 PMT signals
10 lemo female on other side give 5 logic \& 5 PMT signals

Present Schedule:

1 week - design/construct/test v.III (complete 7/22/99)
1 week - artwork for version IV
2 days - PCB fab (shopped)
1 week - stuff/test
\rightarrow Completion of two (2) Version IV boards: Aug 7, 1999.

FEE v. 4 Final Layout

LE version 2 repackaged

FEE v. 4 LE Block Diagram

Lead Edge Discriminator

The purpose of the device is to detect the moment when a pulse amplitude passes a set threshold. Due to the characteristics of pulses (fast rise edges and small pulse width), the circuitry has to be designed with some constraints. Length of traces on the printed circuit board (pcb) has to be minimized, the traces has to be designed as transmission lines with a standard characteristic impedance Z_{0}. Ground planes has to be properly chosen, so to cover a maximum surface of a pcb layer, but to avoid unwanted feedback capacitances for the amplifying elements.
The LED has as components:
-Matching input resistor (network). It is necessary in order to terminate properly the coax cable carrying signals from the photomultiplier tube (PMT). The cables that we have used have $\mathrm{Z}_{0}=$ 93Ω.
-Comparator. It is used one of the fastest integrated circuit comparators: AD96687 (it contains two identical devices). This device will compare the amplitude of the incoming pulse to a dc negative voltage (threshold). When the pulse is larger (absolute value) than the threshold, the outputs of the comparator flip the state. The output is ECL compatible (signal low $=-1.6 \mathrm{~V}$, signal high $=-0.9 \mathrm{~V}$).
-Differential amplifier. It is the load of the comparator and makes the level translation ECLNIM. Besides, this stage improves the rise and fall edges of the output signal. A 16 mA pulse will have a rise edge of 600 ps , as compared with the 2 ns rise edge from the comparator.
-Pulse width circuitry. The output pulse width can be adjusted in the range 15 ns to 100 ns . During the output pulse, the circuit also inhibits the input of the LED to detecting any other incoming pulses.
-Differentiator. This circuit will sense only the change in state of the output pulse, generating a very narrow positive pulse for the rising edge and a very narrow negative pulse for the falling edge.
-Comparator. Noninverting input is driven by the positive pulse from the differentiator. The inverting input is driven by the ramp generated by the ramp generator. The steady state of this circuit is "low". A positive spike from the differentiator will toggle the circuit in a "high" state. That makes the ramp generator to charge the timing capacitor on the inverting input. When the voltage on this capacitor exceeds the voltage on Noninverting input, the comparator changes state back to "low". That will stop the ramp generator to charge the capacitor. The output pulse duration is adjusted with a potentiometer. -Ramp generator. This circuit will charge the timing capacitor with a constant current. It is started or stopped by the comparator.
-PMT signal buffer. This is a gain $=1$ noninverting amplifier. The output has a 50Ω circuit trace on the pcb, to avoid reflections. A Lemo connector and a coax cable with a $\mathrm{Z}_{0}=50 \Omega$ takes the signal to the TDC.
-Voltage reference. A LM385-2.5 at 1mA current, followed by a constant load presented by an inverting amplifier. In this configuration, the reference voltage will vary in value with only the magnitude of the wideband noise of the assembly LM385 AD8056, which is bellow $150 \mu \mathrm{~V}$. The threshold is adjustable with a potentiometer placed as a load to AD8056.

- Power supply. The proper functioning requires a $+5.0 \mathrm{~V},-2.0 \mathrm{~V}$, and a -5.2 V supply

Components used:

AD96687	Dual ultra fast comparator
AD8056	Dual fast operational amplifier
AT-41411	HF transistors

603 surface mount resistors and capacitors
50Ω pcb embedded transmission lines
Lemo connectors

FEE v. 4 LE is the final development discriminator for TOFp
\rightarrow no more FEE R\&D left
FEE v. 5 is same design, layout, \& components except one potentiometer is replaced by a cable
\rightarrow threshold from external LV level...
and two CFDs are paste-replaced by v. 4 LE's...
\rightarrow the 5 channels of the v. 4 are intentionally 100% distinct except for LV...

Direct comparisons of TOFp v. 4 FEE with PS70x series discriminators (300 MHz , 2ns RT)
please ignore data labelled CFD in these tables (setups shown here for LE+LE comparisons only!)...

Diserminator	LED Phillips 708 (2nd disc - changing threshold) [CFD (nem board) is 1st disc]			
Cable	100 mv	200 mv	300 mv	400 mV
Short Cables				
(PH in miv)	581.6	580.1	579.0	578.5
(ADC Slat)	472.9	473.2	473.1	473.3
(ADC Ref)	917.3	918.7	919.0	920.1
(TDC Slat)	$448.0+$ + 1.885	449.3+/. 1.827	450.8+i-1.852	456.9+i. 1.845
(TDC Ref)	$338.2+i-0.3825$	$338.0+1-0.5081$	$336.3+/ .1 .142$ (fit ${ }^{\text {P }}$? $)$	$337.2+$ /-0.4357
Discrminator	LED Phillips 708 (2nd dise-changing threshold) [LED Phillips 708 is 1 st disc at 100 mV]			
Cable	100 mV	200 mV	300 mV	400 mV
Short Cables				
(PH in miv)	563.8	565.5	568.7	572.6
(ADC Slat)	463.0	464.2	466.6	469.5
(ADC Ref)	901.0	903.4	906.3	913.1
(TDC Slat)	$492.8+$ + 1.591	495.9+l-1.616	498.5+i-1.582	$500.1+/-1.617$
(TDC Ref)	$337.3+i-0.2935$	$336.3+1-0.7894$	337.1+i-0.4004	$337.2+$ +-0.3703
Note:				
1)Slat 1 at 1650V				
2)Ref at 1000 V				
3)Filter 2				

ADC 2249A
Lecroy
Obte
Ch7
Cho
Ch9
Ch10
Ch110

Gain Curve for Slat1 at 100 mm

Gain Curve for Slat 1 at 175 mm

Position Test of Slat1 with long cables (1st disc - LEDv4,2nd disc - LED P/S704)

Position Test of Slat2 with long cables (1st disc - LEDv4,2nd disc - LED P/S704)

Position Test of Slat3 with long cables (1st disc - LEDv4,2nd disc - LED P/S704)

Position Test of Slat4 with long cables (1st disc - LEDv4,2nd disc - LED P/S704)

Position Test of Slat1 with long cables (1st disc-LEDv4A,2nd disc-LED P/S704)

Position Test of Slat1 with long cables (1st disc-LEDv4B,2nd disc-LED P/S704)

Position Test of Slat1 with long cables (1st disc-LEDv4C,2nd disc-LED P/S704)

Ambient temperature dependence of performance of all In-Tray components (Slat Assy+Cell+FEE)

31 runs over $\sim 5 \mathrm{hr}$ period
laser @ 1 m.i.p...
fiber on slat at 100 mm ... short cables...

T from thermocouple and DVM...
Oven "nicely" unstable...

performance of the in-tray components does not depend on the temperature
studied in the range from $\sim 72^{\circ} \mathrm{F}$ to $\sim 107^{\circ} \mathrm{F}$...

Performance of R5946+Cell+FEE v. 4 in a Magnetic Field

performance of R5946 in magnetic fields already studied in detail Ahmad et al., NIM A 400, 149 (1997) magnet bore only ~ 6 inches wide, and PMT must be within 20 degrees of parallel to the field... perform test with a v. small piece of scintillator, not a full TOFp slat...
angle that symmetry axis of PMT made w.r.t. the field direction was ~ 10 degrees...

ADC and TDC distributions for various field strengths...

$\mathrm{B}=4.0 \mathrm{kG}, \mathrm{R} 5946+$ Cell+LEDv4B, Applied Voltage $=1385 \mathrm{~V}$

$\mathrm{B}=6.8 \mathrm{kG}$, R5946+Cell+LEDv4B, Applied Voltage $=1745 \mathrm{~V}$

R5946+Cell+FEE v. 4 works fine in magnetic fields...
studied from to 0 to 6.5 kG ...

decreasing gain in PMT compensated for by increasing the voltage. yet relative timing changes... PMT's leading edge slows for increasing field strength.
\rightarrow Timing resolution remains good in all cases...
\rightarrow Timing offsets when STAR's field is 0 kG are $\sim 0.5 \mathrm{~ns}$ later than they are when the field is 5 kG

Any modern discriminator is "fast enough" to be the TOFp 'second discriminator'... No cost, availability, or complexity concerns in this choice... Rather this choice is driven entirely by a single performance spec:

"Discriminator timing cross talk"

- the Proposal names the PS7106 for this discriminator based on E896, E877 and its availability...
attractive due to mult sum output and high channel density...
- alternatives include PS 704-708 NIM and LeCroy models...

up to 400 ps of timing cross talk!

timing cross talk consistent with zero...

Cross-Talk Mapping of the face of a 7106...
CUS = Channel under study
NC = Neighbor channel
interpulse delay is fixed at +200 ps (@ maximum effect on previous page)

CUS1	NC	DT	Diff (ps)	CUS2	NC	DT	Diff (ps)	CUS4	NC	DT	Diff (ps)	CUS5	NC	DT	Diff (ps)
Delay 200ps	2	24.43	390		1	24.79	570		1	24.48	10		1	24.12	60
	3	24.21	170		3	24.39	170		2	24.55	80		3	24.05	-10
	4	24.06	20		4	24.33	110		3	24.9	430		4	24.11	50
	5	24.15	110		6	24.33	110		5	24.53	60		6	24.41	350
	none	24.04			none	24.22			6	24.47	0		7	24.15	90
									8	24.47	0		8	24.05	-10
									none	24.47			none	24.06	
CUS1	NC	DT	Diff (ps)	CUS2	NC	DT	Diff (ps)	CUS4	NC	DT	Diff (ps)	CUS5	NC	DT	Diff (ps)
Delay -200ps	2	24.36	340		1	24.57	390		1	24.35	-90		1	24.11	70
	3	24.19	170		3	24.33	150		2	24.5	60		3	24.06	20
	4	24.05	30		4	24.32	140		3	24.67	230		4	24.09	50
	5	24.15	130		6	24.29	110		5	24.49	50		6	24.28	240
	none	24.02			none	24.18			6	24.43	-10		7	24.16	120
									8	24.44	0		8	24.03	-10
									none	24.44			none	24.04	0
CUS1	NC	DT	Diff (ps)	CUS2	NC	DT	Diff (ps)	CUS4	NC	DT	Diff (ps)	CUS5	NC	DT	Diff (ps)
Delay 200ps	2	25.32	250		1	24.47	-580		1	24.84	110		1	24.98	-20
	3	25.27	200		3	25.34	290		2	24.89	160		3	25.03	30
	4	25.13	60		4	25.2	150		3	25.12	390		4	25.1	100
	5	25.07	0		6	25.05	0		5	24.87	140		6	25.17	170
	none	25.07			none	25.05			6	24.79	60		7	25.14	140
									8	24.72	-10		8	24.99	-10
									none	24.73			none	25	

Simply awlful performance...
Cross talk is everywhere...
Levels can approach 600ps...
Can extend past nearest neighbors...
Using less than fully-loaded PS7106 modules is thus also marginal for TOFp

Clearly, the PS7106 is not appropriate for the TOFp/pVPD platform discriminator... loading only every 4th channel still marginal!

Alternative \#1: do it in NIM...

- numerous PS 708 units exist in E896 TOF and are available to TOFp.
- missing now is the internal sum output feature of the PS7106... this functionality would have to be set up w/ separate NIM logic...

Alternative \#2: do it in NIM differently...

- PS 705 and 710 NIM discriminators have sum outputs...
- but these are only 75 MHz , and 150 MHz , respectively.

Alternative \#3: do it in CAMAC differently...

- the LRS 3412 has sum outputs and other nice features...
- performance (resolution \& cross talk) not yet studied...
- availability in equipment pools not yet investigated...

Notes:
...still intend to borrow the needed units from HEEP
...space exists in the TOFp rack for any of these options
\rightarrow no cost or complexity issues here, just a choice to make...
If a decision is needed now, we choose Alternative \#1
(but f.y.i. we will look into Alternative \#3 after this review)...

TOFp "Stop Resolution" from the big full system...

- room temperature, no magnetic field...
- laser fiber on slat attenuated to 1 MIP, Andover Filter OD=2...
- start PMT is 8575 , monster light pulses...
- BC420 20x4x2cm + Epotek 301 + R5946, "Slat 1"...
- HVSys Cell 1...
- First discrimination is Rice version 4 LE...
- 250 feet RG-58C/U between 1st and 2nd discrimination...
- Second discrimination is P/S 704...
- CAMAC digitization in LRS 2228A TDC (50ps/ch)... confirmed with Infinium
- GPIB readout to PC and HBOOK/PAW...

4 TDC 16z13, October, 01, 1999

SysTest-I Summary:

Cables:
FlatCoax is not appropriate for the long cable, O.K. near tray only..
Measured attenuation, amplitude \& timing cross talk, temperature dependence...
Adopted RG-58/U for long cables. ($\sim 88 \%$ of the attenuation of the RG-58C/U or FlatCoax that were studied) No R\&D remaining.

Voltage System:

Studied HVSys - no problems, several additional advantages - Adopted.
No crashes seen, stable to percent level so far...
No need for HDLC interface in-tray.
No temperature or magnetic field dependence seen.
No R\&D remaining - cell design fully specified and prototypes work.
FEE:
v. 2 LE repackaged into final geometry (a.k.a. FEE v.4) still works great... ...outperforms best commercial units (in both resolution and output RT)
No temperature or magnetic field dependence seen.
No $R \& D$ remaining - v. 5 is a trivial modification of v.4, no design changes.

Platform/Full System:

PS7106 for second discriminator is not appropriate, move this to NIM (PS708's also in hand).
Complicated patch panel no longer needed (cables and platform now Z-matched).
2228/2249 CAMAC DAQ digitization works as expected, confirmed by Infinium.
TOFp "stop resolution" with final components ranges from 40ps to 60ps...
No major surprises, no design decisions remaining...
We claim we are 100% ready to begin tray construction...

Fake TOFp

optimize positioning and support define foam shapes and cooling loop... define cables and their routes...

HVSys Bus and routing...

Cooling loop path and Foam/FEE Support...

$\eta=0$ end...
$\eta=1$ end...

Fake TOFp Status as of 10/2/99
final slat positioning and angles.. ten prototype "lower wedges"... interior rails installed in final position...

Next steps:
Prototype electronics mounts...
(these double as "upper wedge supports")
Prototype "upper wedges"...
FEE mounts...
Tray roof mount...
Cooling loop hardware...
Cable routing revisited...
Feedthrough plate layout...

TOFp CADD Implementation

final dimensions for the slats+wrapping, PMTs,
cells,
FEE,
cable,
support/cooling, are all known...
iterating between CADD and fake TOFp...

for this and the following images:

$\eta \sim 0$

TOFp SysTest-II

- smaller scope version of SysTest-I...
- at BNL and with final tray and electronics...

TOFp Installation

- remove 1 CTB tray, slide TOFp in...
- route cables from tray end to TOFp rack...
- connect cables at the two ends...
- "T" into TPC water loop as instructed...
- install/connect platform components needed to check the tray and cabling...
- power up cells and take cosmics... \rightarrow end of detector installation
- install/connect any remaining components (e.g. DAQ, TRG interfaces etc.)
$0 \$ / 120=0 \$$

STAR Trigger Central Trigger Barrel
 Tray Removal and Replacement Procedure

Leo Greiner, Geary Eppley

June 28 ,1999
The STAR Trigger CTB Trays each contain two scintillator slats with one photomultiplier tube and base per slat. If a tray needs to be replaced or repaired the following procedure should be used. We do have functional spare trays at BNL ready for use. It is recommended that these good trays be simply swapped for the malfunctioning tray and the malfunctioning tray be fixed at a STAR lab by qualified people. This procedure is written for this approach.

Before swapping trays have a tested good tray in position near the STAR detector to replace the malfunctioning tray.

Removal of tray:

1. Turn the HV off on the entire CTB via software control.
2. Turn off the HV mainframe power switch in rack 1B4 and post warning sign.
3. Set up ladders and / or rigging or man-lifts appropriate to the safe removal of the tray. This will depend on the location of the tray that needs replacing. All personnel involved should have the appropriate training for the task.
4. Remove the 6 cables ($2 \times \mathrm{HV}, 2 \times$ Signal and $2 \times$ LED pulser) from the connectors on the end of the tray.
5. Remove the ground wire from the tray body.
6. Carefully slide the tray out keeping it parallel to the track on the TPC.
7. Remove the tray and carefully lower it to the ground.

Installation of tray:

1. If needed, install a positioning tray stop on the good tray.
2. Carefully raise the good tray into position such that it is parallel to it's track on the TPC.
3. Carefully slide the tray in keeping it parallel to the track on the TPC.
4. Re-attach the ground wire from the tray body.
5. Re-connect the 6 cables ($2 \times \mathrm{HV}, 2 \times$ Signal and $2 \times$ LED pulser) to the correct connectors on the end of the tray.
6. Remove the ladders / rigging or manlifts.
7. Remove the sign and turn on the HV mainframe in rack 1B4.
8. Turn the HV on and test the tray.

Revisions for TOFp Removal

1. \& 2. \rightarrow disable HVSys
2.

unchanged
3.5 \leftarrow Contact experts to remove TOF connections to water 4. $\quad \rightarrow$ remove 10 FlatCoax assemblies, 1 ribbon cable, 1 LV cable from the connectors on the tray end 5. - 7. unchanged.

For TOFp (re-)Installation, undo each "removal step" in reverse order...

Four full slat assemblies were studied throughout SysTest-I 3 worked superbly under all conditions...
1 worked superbly in general, but freaked when pushed to extremes...
The test procedures must recognize basic problems of course but also those components that may not like being pushed...

SysTest-I was the ulltimate test procedure

all relevant tests are defined...
all hardware needed to collect the relevant test data is in hand...
basic information on the performance specs for actual components is in hand...
we'll provide a separate document on test procedures soon. ...call this the TOFp SysTest-II Plan if you want...

Voltage Path:

HVSys communication to System Module...
System Module communication to cells...
Built-in feedback and monitoring with GUI...
Signal Path: (after HVSys testing complete)
Cosmics in powered-up slats...
Performance of Slats, Slat/PMT junction, ADC path in FEE, and in-tray cabling ...
Existence of stops...

FEE Performance: (after signal path testing complete)

Laser/source tests - performance of full in-tray chain...
Digitization: (after FEE testing complete)
Readout of ADCs and TDCs via GPIB Interface into local PC...
Performance of platform components...

TOFp calibration Initial:
Before the TOFp tray is installed, and using the laser attenuated to 1 MIP:

- The gain scale for all slat assemblies will be already be defined
\rightarrow preset default voltages...
\rightarrow known gain curves in the region near these defaults...
- The performance of each channel of final FEE will already be spec'd \rightarrow initial specs on pulse area performance...
\rightarrow initial specs on pulse time performance...
\rightarrow known relative timing offsets out to tray feedthroughs...
- The performance of each cable channel will already be spec'd
\rightarrow known cable delay and attenuation specs...
- Each TOFp DAQ channel will already be spec'd \rightarrow known pC to counts conversion in ADCs...
\rightarrow known internal timing offsets in TDCs...
\rightarrow known ps to counts conversion in TDCs...
TOFp calibration Incremental:
...performed using the normal experimental data itself:
Gain variations...
Slewing...
Scintillation light propagation speed...
Temperature effects...
\rightarrow All extremely well-understood effects, standard techniques apply...
...performed using data from a separate stream:
Pulser triggers... (STAR standard)
TimeCalibrator runs... (can be done using local DAQ)

There is no need for in-tray calibration hardware!
i.e. in-tray LEDs, or optical fiber paths while the tray is installed...

Time of Flight means starts and stops... time resolution is the quadrature sum of the two...
circa TOFp proposal, our understanding was the VPD would not exist in Year 1.
we simulated TOFp-based corrections to ZDC ($\sim 250 \mathrm{ps}$)
$\rightarrow \sim 50 \mathrm{ps}$ resn. under favorable conditions, 91% efficient this correction only works in highest mult collisions...
in peripheral $\mathrm{Au}+\mathrm{Au}, \mathrm{Si}+\mathrm{Si}, \mathrm{p}+\mathrm{p}, \rightarrow \sim 250$ ps starts?
a simple 16ch pVPD would solve the problem effectively most of the detector/electronics can be borrowed \rightarrow highly conventional and very cheap

Recent interest/actual work towards a VPD or pVPD...
Bellwied/Pandey et al. Bench tests of resolution of come commericial electronics Kunz/Kaplan et al. New simulations
John Mitchell Interest in constructing detectors
Crawford et al and TOFp...
What TOFp needs from a pVPD is not the full functionality of the well-known VPD.
TOFp wants $\mathrm{Nch} \sim 16$ ($\mathrm{Nch} / 2$ elements per side) Nch analog signals with pVPD PMTs \rightarrow TOFp ADCs... Nch logic signals from disc close by \rightarrow TOFp TDCs...
CTB or equiv pretrigger as for RICH...
...then logic local to TOFp forms TOFp master starts

pVPD simulations．．． pVPD based on library＇s vpddgeo．g

$\mathrm{Au}+\mathrm{Au}, 200 \mathrm{GeV} / \mathrm{N}$, HIJING 400 cm from P．V．to either det．．． Intrinsic time resn．assumed $=75 \mathrm{ps}$ studied

Ndets／side $=1,2,4,8,24 \ldots$ 0－3，3－6，6－9，9－12 fm bins．．．

Table 1．Vertex position resolution results from $\mathbf{A u}$－ $\mathbf{A u}$ simulations．

	Impact Parameter											
	0.3 fm			$3-6 \mathrm{fm}$			6.9 fm			9－12 fm		
	Mean	RMS	Hits									
令院 1	－0．035	0.199	－	0.018	0.214	－－	－0．033	0.281	－－	－0．020	0.453	－－
\％ 2	－0．033	0.164	－－	0.020	0.163	－－	－0．028	0.216	－－	0.011	0.311	－－
84	－0．018	0.139	－－	－0．023	0.139	－	0.018	0.176	－－	0.025	0.246	－－
目 8	0.010	0.116	－－	－0．020	0.111	－－	－0．011	0.143	－－	0.036	0.174	－－
≥ 24	－0．005	0.088	525．1	－0．009	0.076	420.8	－0．016	0.115	245.9	0.020	0.155	100

In conclusion，these simulations indicate that a VPD with at least two PMTs per side would perform satisfactorily for the Au－Au system．This would allow constraction of a bare－bones VPD at minimal cost，recognizing of course，the limitations on functionality．
．．．primary vertex locating in．．．

Hank's "E878 Centrality Detector" is just sitting around...

- 28-32 individual detector elements
- Pb+Quartz front faces
- Hamamatsu R2448 PMTs (3/8" square, 8 stage linear, $<1250 \mathrm{~V}$, gain $1.1 \mathrm{e} 6,2 \mathrm{nA} \mathrm{dk}$. current, RT=0.9ns, eTT=8.5ns)
- HV Bases (bipolar Darlington current amplification)
- Shields appropriate up ~50Gauss
my pVPD geometry...

Just build:
New shields ($\sim 50 \$$ ea):
Mounting structure:
formed μ-metal + electrowelded low-carbon steel tubing
then Assemble \&Install!

Digitization...

No impedance matching needed in panel...

Platform modules in hand...

$$
\begin{aligned}
& \text { Earliest Signal: } \quad \beta=1 \text { at } \eta=0 \\
& \Delta \mathrm{t}=220 \mathrm{~cm} /(30 \mathrm{~cm} / \mathrm{ns})=7 \mathrm{~ns}
\end{aligned}
$$

Latest Signal: $\quad \mathrm{p}=\mathbf{0 . 4} \mathbf{~ G e V} / \mathrm{c}$ at $\boldsymbol{\eta} \sim 1$
$\theta=42.3 \mathrm{deg}, \mathrm{Pt} \sim 0.3 \mathrm{GeV} / \mathrm{c}$
$\mathrm{R}=667 * \mathrm{Pt}=204 \mathrm{~cm}$
$\mathrm{Z}=2.2 \tan (47.7)=242 \mathrm{~cm}$

$\mathrm{Sb}=2 \mathrm{R} \sin (\mathrm{C} / 2 \mathrm{R})=384 \mathrm{~cm}$
$\mathrm{S}=\mathrm{Sb} \oplus \mathrm{Z}=454 \mathrm{~cm}$
$\mathrm{p}=0.4 \mathrm{GeV} / \mathrm{c} \rightarrow \beta=0.39 \rightarrow \mathrm{v}=11.7 \mathrm{~cm} / \mathrm{ns}$
$\Delta \mathrm{t}=454 \mathrm{~cm} /(11.7 \mathrm{~cm} / \mathrm{ns})=39 \mathrm{~ns}$

Table 1: The cost for the TOFp System, including contributions from collaborating institutions. The contingency assumed for certain items is shown between parentheses. The costs shown in italics are the costs of contributed items.

ITEM	Source	Quantity	$\begin{array}{r} \hline \text { LABOR } \\ (\$) \\ \hline \end{array}$	EQUIPMENT $(\$)$	
Tray Interior					
Tray hardware	Oaks Precision	1	0	1000(25\%)	
BC420 slats	Bicron	45(4)	0	3465(10\%)	
Foam/Glue/Wrapping	various		0	875(25\%)	
R 5946 PMTs ${ }^{\dagger}$	Hamamatsu	25	0	27500	
R5946 PMTs	Hamamatsu	20(4)	0	26400(20\%)	
FEE Boards	Rice v. 5	12(2)			
Parts			0	5520(20\%)	
Stuff/Test ${ }^{\text {§ }}$			$3750(25 \%)$	0	
Cable assys	Amphenol	12(2)	0	2000(25\%)	
Feedthroughs	various		0	$200(25 \%)$	
Cables					
RG-58/U Coaxial	Belden	80	0	6720(20\%)	
Low voltage	Newark	1	0	$200(25 \%)$	
HVSys					
Cells	Astakhov et al.	45(4)	0	4500(20\%)	
System Module ${ }^{\ddagger}$	Astakhov et al.	1	0	$3000(20 \%)$	
Platform					
Patch Panel	Rice	1	0	$3000(20 \%)$	
CAMAC Crate	HEEP	1	0	0	
NIM Bin \& logic	HEEP	1	0	0	
P/S 7106 Disc	HEEP	$6(2)$	0	0	
LRS ADC \& TDC	HEEP	$6(2)$ ea.	0	0	
$347024 \mathrm{bit} \mathrm{I} / \mathrm{O}^{\dagger}$	Kinetics	1	0	1000	
3972 Crate controller, $8 \mathrm{MB}^{\dagger}$	Kinetics	1	0	11000	
2961 Host adapter ${ }^{\dagger}$	Kinetics	1	0	9000	
$2306 \mathrm{CPU}, 32 \mathrm{MB}^{\dagger}$	Motorola	1	0	3000	
Trigger TCD Board	LBNL	1	0	4200(20\%)	
Installation					
Shipping	Rice		500(20\%)	0	
pVPD					
Detectors ${ }^{\dagger \dagger}$		18(2)	0	4000	
Mounting ${ }^{\ddagger \ddagger}$		2	0	1000	
RG-58/U Coaxial ${ }^{\ddagger \ddagger}$	Belden	40(4)	0	1200	
FEE	HEEP (or Rice v.5)	18(2) ch	0	0	
Totals			4250	118780	
Total				123030	
Total, excluding contributions				65330	
Total per channel, ${ }^{\\|}$excluding contributions				1452	

${ }^{\dagger}$ Contribution from IOPP/CCNU et al., Wuhan and Beijing, China.
$\dagger \dagger$ Contribution from Kent State University, Kent, Ohio.
$\ddagger \ddagger$ Contribution from Rice University, Houston, Texas.
\ddagger One HVSys System Module (to be the backup) is already in hand.
§ $25 \$$ per hour for FEE stuff/test was assumed.
${ }^{\top} 45$ channels constructed was assumed, 41 of these are installed in the TOFp tray.

TOFp Groups:

Rice University:
Construction of loaded TOFp Tray, signal cables, and patch panel...
TOFp SysTest-II...
TOFp Installation and Commisioning...
TOFp offline software...
TOFp project management...
CCNU/IOPP, Beijing and Wuhan, China: Liu Lianshou et al.
Construction of TOFp DAQ Interface hardware and VxWorks software...
Implementation of TRG/TOFp DAQ Interface...
Purchase 25 R5946 PMTs...
Visitors to BNL and Rice for DAQ/TRG development and operation...
Separate proposal to CNSF for larger contributions to STAR TOF (in $\sim 1 \mathrm{yr}$)
Kent State University: Declan Keane et al.
Liu Heng - ramping up to ~ 0.5 FTE on TOFp offline software...
$4 \mathrm{k} \$$ contribution for pVPD hardware...
Others in group potentially available later...
UC-Berkeley: Hank Crawford et al.
Help as needed with implementation of TRG/TOFp interface...
LBNL (Jacobs), MIT (Ogilvie), and others...
Still true believers, but unable to commit significant resources at the moment...

pVPD Groups:

Johns Hopkins University: John Mitchell
pVPD Hardware and commissioning...
Interface to TOFp...
Rice University:
Interface to TOFp...
Some funds if necessary...
Carnegie Mellon University: Mort Kaplan et al.
pVPD Simulations and commissioning...

[^0]:

