Light (anti)Nucleus Production in $\sqrt{s_{NN}} = 7.7 - 200 \text{ GeV}$ Au+Au Collisions in the STAR Experiment

W.J. Llope for the STAR Collaboration Rice University

1

Light (anti)nucleus production in 7.7 – 200 GeV Au+Au collisions in STAR Introduction

A complete understanding of the hot and dense partonic and/or nuclear systems formed at RHIC requires an understanding of the latest stages of the collisions.

Light nucleus rates and spectra are a "direct" nucleon correlation observable that is complementary to two-particle correlations obtained, *e.g.*, from intensity interferometry (HBT).

Thermodynamic approaches and the sudden approximation can provide insight on source "homogeneity volumes" and emission profiles, (anti)proton phase space densities, *etc*.

Cuts

Outlier run rejection based on multiple global observables.

$\sqrt{s_{_{NN}}}$	Run	N _{events}
7.7	2010	5M
11.5	2010	15M
19.6	2011	37M
27	2011	46M*
39	2010	58M*
62.4	2010	59M*
200	2010	51M*
200	2011	47M*

*Not entirety of available data.

Event Cuts $|Z_{vtx}| < 50$ cm for $\sqrt{s_{NN}} \le 39$ GeV, $|Z_{vtx}| < 30$ cm otherwise $R_{vtx} < 2cm$ Pileup event rejection based on multiple global observables.

Primary Track Cuts

 $N_{hitsfit} > 15$ (of 45 possible) $N_{hitsdedx} > 10$ (of ~35 possible) Global partner D.C.A. to primary vertex < 3 cm TOF: "good match" criterion ≥ 1 TOF: $Y_{local} < 1.8$ cm

Centrality

Uses primary track multiplicity within $|\eta| < 0.5$ Corrected for Z_{vtx} and beam luminosity dependence

Particle Identification

Uses TPC dE/dx and Time Of Flight (TOF) ...Careful avoidance of dE/dx "merged tracks" Statistical, in small (P_T,y,centrality) bins

Uncertainties are statistical only.

Efficiencies depend on year, $\sqrt{s_{NN}}$, centrality, species, rapidity, P_T

T. F. Hoang, *et al.*, Z. Phys. C29, 611 (1985) Check material budget via p & pbar embedding

(anti)proton Feed-down $(\Lambda, \Sigma \rightarrow p)$ UrQMD 3.3p1 simulations full reconstruction

Sharp increase in nucleus cross-sections at low M_T is due to spallation:

X + Beam Pipe = p,d,t + Y

Significant for $P_T < \sim 0.5 * A$, does not produce antinuclei

Light (anti)nucleus production in 7.7 – 200 GeV Au+Au collisions in STAR Coalescence Ratio B₂

 $B_2 = \sigma_d / \sigma_p^2$, where the cross-sections are evaluated at the same velocity (P_T/A)

 B_2 is a dimensioned ratio that can be related in model-dependent ways to a "homogeneity volume": $B_A \sim 1/V$

WJL, S. Pratt et al., Phys. Rev. C 52, 2004 (1995), R. Scheibl & U. Heinz, Phys. Rev. C 59, 1585 (1997)

Lines are UrQMD 3.3p1 or Pythia model calculations plus a "dynamic coalescence afterburner" uses 6D coalescence with one of three d wave functions for A+A (UrQMD), 3D coalescence for Pythia. J. L Nagle et al., Phys. Rev. C **53**, 367 (1996), B. Monreal, WJL, *et al.*, Phys. Rev. C **60**, 31901 (1999)

Proton density falls with $\sqrt{s_{NN}}$, Antiproton density rises with $\sqrt{s_{NN}}$ Trends reflect decreasing baryochemical potential, μ_B , with increasing $\sqrt{s_{NN}}$

Light (anti)nucleus production in 7.7 –

Source "Homogeneity" Radii

Light (anti)nucleus production in 7.7 – 200 GeV Au+Au collisions in STAR

$$B_2 = \frac{\sigma_d}{\sigma_p^2}, \quad (R_G^2 + \frac{\delta^2}{2})^{3/2} = \frac{3}{2} \frac{\pi^{3/2} \hbar^3}{B_2 m_p c^2} \quad \text{(anti)deuteron Gaussian width: } \delta \sim 2 \text{ fm}$$
$$m_p = \text{proton mass}$$

HBT results from H. Zbroszczyk, 7th WPCF, 2011 http://tkynt2.phys.s.u-tokyo.ac.jp/wpcf2011/talks/sept20/Zbroszczyk.pdf

- Light (anti)nuclei have been measured in Au+Au collisions at seven beam energies by STAR at RHIC.
- Spectra versus P_T , P_T/A , M_T/A , and M_T-M_0 provide information on the nucleon source near freeze-out.
- Hardening of the spectra with the mass number reflects strong transverse flow.
- Qualitative reproduction of B₂ values by UrQMD+dynamic coalescence calculation.
- Gaussian radii from B₂ values similar to that from (anti)proton intensity interferometry (HBT).
- Antiproton and proton phase space densities approach each other as $\sqrt{s_{NN}}$ increases, reflecting decreasing μ_B .

