Light Nucleus Production in p+p & d+Au

W.J. Llope, Rice University ☆ Collaboration Meeting Berkeley, 10/07/2009

Existing Results on B₂

 $B_A = \sigma_A / [\sigma_N]^A$ where the cross-sections are evaluated at same momentum/nucleon

 $B_A = d/p^2$ where cross-sections are formed at same $P_T/A \& y=0, \Delta y=1.0$

deuterons relative to protons is largest in "elementary collisions"...

- \rightarrow factor of ~40 larger than in A+A according to the trend (blue squares)
- \rightarrow essentially independent of $\sqrt{s_{NN}}$... also unlike A+A

Fig. 3a, b. a Possible string breakup process with a *pn* pair. b Spacetime structure of the breakup

Coalescence Afterburner + pure Pythia events.....

define Δp - the relative momentum cutoff for p+n pair forming a deuteron ($k = \Delta p/2$)

 $\Delta p \sim 120\text{-}140$ MeV implied by earliest Bevalac A+A results...

(somewhat larger value required to match existing p+p data - see previous pages)

Factor ~10 differences in d/p^2 depending on Pythia subprocess.....

Jets and deuteron production.....

use Pythia's PYCELL (simple seeded cone) to find jets....

B2 values hugely increased in Jets... (and also increase with the jet energy?)

Spallation....

DEUTERONS, Au+Au, 100 GeV/N/beam, b<2fm, RQMD 2.4 + wigner/hulthen coalescence

Significant spallation backgrounds are well-known.... ...swamps primary deuteron signal for $P_T < \sim 1 \text{ GeV}$

Goals:

- \rightarrow learn how to use \Leftrightarrow MuDsts & offline software...
- → investigate DCA-type cuts to suppress spallation backgrounds track densities are relatively low... primary vertex not as precisely defined...
- → extract cross-sections and coalescence parameters for d and t production & compare to: trends implied by the existing lower-energy data.... UrQMD or Pythia calculations with coalescence afterburner...
- → Include direct Jet-finding & investigate fragment production mechanisms...

Data:

Run-6	p+p	$\sqrt{s_{NN}} = 62 \text{ GeV}$	4.8 M events
Run-8	p+p	$\sqrt{s_{NN}} = 200 \text{ GeV}$	36.1 M events
Run-8	d+Au	$\sqrt{s_{NN}} = 200 \text{ GeV}$	75.8 M events

Cuts:

Require that a Primary Vertex was found... Nfitpts > 15, Nfitpts/Nhitsposs > 0.52, DCAglobal < 1.0cm Presently, use only TPC dE/dx for PID....

A.S.A.P....

Include PID from the significant TOF coverage in the Run-9 data.... Produce plots for the new $\sqrt{s_{NN}} = 500$ GeV data....

d/dbar is huge... (spallation in $\overrightarrow{\bowtie}$)

Significant dbar signal in our p+p and d+Au data.....

Some that and He-3's too... (hard to see here though)

At present, simply do the PID by "Splitting the differences" of the dE/dx curves....

Momentum cut-offs used: $p \rightarrow 1.0 \text{ GeV}$ $d \rightarrow 1.5 \text{ GeV}$ $t \rightarrow 2.0 \text{ GeV}$

...fairly crude at the moment & can be improved & TOF will help a lot too

d+Au√s_{NN}=200

15

-10 -15 -20 5 20

15Ē

10

-15 -202.5

20 15 10

-5

-15

-295

Working towards Statistical PID....

reference = dbar

reference = tbar

Run-8 p+p 200 GeV

Our dbar B2 is close to that in the lower-energy p+p data: $B2 \sim 0.02$

Run-8 d+Au 200 GeV

....Here **B2** ~ 0.01

Notes: no Eff., Abs., or F.D. corrections... DCAglobal < 1.0cm... Hyperon weak decays turned off in Pythia... tritons from d+n not p+n+n...

dbar B2 implies $\Delta p \sim 350$ MeV for p+p, 62 GeV

Comparison to Pythia -- p+p 200 GeV

Notes: no Eff., Abs., or F.D. corrections... DCAglobal < 1.0cm... Hyperon weak decays turned off in Pythia... tritons from d+n not p+n+n...

dbar B2 implies $\Delta p \sim 200$ MeV for p+p, 200 GeV

Comparison to UrQMD -- d+Au 200 GeV Notes:

no Eff., Abs., or F.D. corrections... DCAglobal < 1.0cm... Hyperon weak decays turned off in Pythia... tritons from d+n not p+n+n...

Comparison to UrQMD -- d+Au 200 GeV

dbar B2 implies $\Delta p \sim 200$ MeV for d+Au, 200 GeV

Dependence on DCA cut -- p+p 200 GeV

Dependence on DCA cut -- d+Au 200 GeV

Lots of other DCA plots made - could not find a "magic cut" that brought d/dbar near ~1.....

options: 1. concentrate on dbar and tbar, and give up on d and t....

- 2. "standard" P_T>1 GeV cut... ...only productive for Run-9 data including TOF PID?
- 3. PHENIX simulation method & subtract spallation background.

NJ, J1ue, J2ue are very similar. J1as & J2as are different! particle and antiparticle cross-sections "meet" above $P_T \sim 1 \text{ GeV}$ pbar & dbar cross-sections considerably harder for in-jet compared to not in-jet

B2 & B3 significantly larger for particles associated with Jets antiparticle B2 and B3 essentially flat for increasing P_T/A

Cross-sections -- d+Au, 200 GeV

NJ, J1ue, J2ue are very similar. J1as & J2as are different! particle and antiparticle cross-sections "meet" above $P_T \sim 1 \text{ GeV}$ pbar & dbar cross-sections considerably harder for in-jet compared to not in-jet

B2 & B3 significantly larger for particles associated with Jets B2 and B3 falling with increasing P_T/A

B2 for jet-associated particles gated on Jet Energy -- p+p 200 GeV

Here - "All Jets" and d/p^2 formed for y=0 & $\Delta y=1.0$

B2 increases with jet-energy (also suggested by Pythia)

B2 for jet-associated particles gated on Jet Energy -- d+Au 200 GeV

Here - "All Jets" and d/p^2 formed for y=0 & $\Delta y=1.0$

Pair-Normalized 2 "proton" (2p, 2pbar, p+pbar) relative momentum distributions max Δp is 2.0 GeV due to 1 GeV dE/dx PID cut on each p or pbar

Two protons in Jets are highly correlated in relative momentum → consistent with observation of increased B2 in jets

Pair-Normalized 2 "proton" (2p, 2pbar, p+pbar) relative momentum distributions

Similar story in d+Au: Two protons in Jets are highly correlated in relative momentum → consistent with observation of increased B2 in jets

Pair-Normalized 2 "proton" (2p, 2pbar, p+pbar) relative momentum distributions now gating on Jet Energy

Two protons in Jets become more highly correlated in relative momentum w/ the Jet Energy → consistent with observation of increasing B2 in jets w/ the Jet Energy

Pair-Normalized 2 "proton" (2p, 2pbar, p+pbar) relative momentum distributions now gating on Jet Energy

Interestingly - general trend in d+Au is there (Not in Jet vs. in Jet) but increasing the jet energy slightly depletes the lowest Δp region.....

Summary

First attempt at light nucleus analysis for p+p and d+Au data (Runs 6 & 8)

looking forward to analyzing the Run-9 data!

- \rightarrow significant TOF coverage
- → 500 GeV data

Preliminary results:

- \rightarrow Significant dbar signal in the p+p and d+Au data, some tbars too.
- → evt-avg dbar B2 in 200 GeV p+p = $\sim 0.02...$ (consistent with lower energy p+p data) evt-avg dbar B2 in 200 GeV d+Au = $\sim 0.01...$
- → Need corrections, but results consistent with Models & $\Delta p \sim 200$ MeV so far (reasonable)
- → σ for pbar and dbar in No Jet events similar to that in Jet events but not associated w/ a Jet σ for pbar and dbar associated with a Jet are different (and harder with P_T)
- → Significant increase in B2 for jet-associated particles compared to "UE" particles suggested by pythia

To-Do List

- → Respin MuDsts (include more vtx information and retry investigation of spallation BGs)
- → continue to contribute to TOF calibrations & get onto Run-9 data w/ TOF PID A.S.A.P....
- → better simulations (use gstar and "real" jetfinders on simulated events)...
- & your suggestions!

Thanks in advance for your comments...

Some Raw Counts.....

	p+p 62 GeV Run-6	d+Au 200 GeV Run-8	p+p 200 GeV Run-8
Nev all	4.75121e+06	7.58645e+07	3.61101e+07
Nev NJ	4.39813e+06	2.51635e+07	2.16753e+07
Nev J1	306197	1.44996e+07	8.63504e+06
Nev J2	44865	1.10162e+07	4.30746e+06
Nev J E1	134510	17729475	4007314
Nev J E2	218270	43533859	9665726
Nev J E3	19137	19191889	4028187
Nev J E4	2329	2812450	640132
Nev J E5	1676	123232	38086
Nev J E6	614	3216	1775
Nev MRjet	104071	29545104	4821026
Nev J E1 MR	55216	10885190	1812479
Nev J E2 MR	47514	20610915	2721945
Nev J E3 MR	2984	6753361	759762
Nev J E4 MR	1051	521236	75746
Nev J E5 MR	798	16360	3387
Nev J E6 MR	302	393	244