Light Nucleus Production in p+p and the BES

W.J. Llope Rice University

Outline:

Quick overview of major directions of this analysis

Fragment spectra in p+p collisions

 B_2 and source radii (first measurement at RHIC)

UE vs in-Jet differences, & dependence on Jet Energy (first measurement anywhere)

Fragment production in BES

antinucleus production cross-sections and B₂ at low root-s (first measurement anywhere) source radii from B₂ vs P_T & $\sqrt{s_{NN}}$ (some RHIC results at high- $\sqrt{s_{NN}}$, but not at BES/SPS energies) direct comparison to HBT (existing results from SPS, but not RHIC) (anti)baryon density vs $\sqrt{s_{NN}}$ (significant extension in P_T using TOF, and in $\sqrt{s_{NN}}$ in BES data)

Direct comparison to models (urqmd 2.3/3.3p1, AMPT, Pythia)

millions of events (from SUG@R & davinci) + coalescence

Just need corrections now Absorption "done" Feeddown in progress (CPU intensive) Reconstruction Efficiency (now underway)!

...an astoundingly rich data set from an awesome detector!

Datasets Analyzed with the same code:				
11 = p + p	62GeV	run-6 no TOF		
12 = d + Au,	200GeV	run-8 no TOF		
13 = p+p	200 GeV	run-8 no TOF		
14 = p + p	500 GeV	run-9 partial TOF		
15 = p + p	200 GeV	run-9 partial TOF		
16 = Au + Au	200 GeV	run-10 full TOF		
17 = Au + Au	62.4 GeV	run-10 full TOF		
18 = Au + Au	39 GeV	run-10 full TOF		
19 = Au + Au	7.7 GeV	run-10 full TOF		
20 = Au + Au	11.5 GeV	run-10 full TOF		
23 = Au + Au	19.6 GeV	run-11 full TOF		
25 = Au + Au	27 GeV	run-11 full TOF		

Comparisons to world's data.....

pythia B2 by E_{jet} bin, 200 GeV

B2 increases ("V" decreases) as collisions get more peripheral

hard-sphere $R = 2.2R_{G}$ conversion of B_A into R_G done via WJL *et al.*, PRC **52**, 2004 (1995).

hard-sphere $R = 2.2R_{G}$ conversion of B_A into R_G done via WJL et al., PRC 52, 2004 (1995).

absorption pbar handled by geant/embedding Abar cannot be done w/ geant, need to use an empirical approach

feeddown

simulation/reconstruction of full events from some model

reconstruction efficiency embedding

Light nuclei in p+p and the BES Absorption

geant does not know how to interact antinuclei w/ arbitray materials

so use prescription described in Christof Struck's thesis...

same prescription used in recent antialpha paper after scaling the materials

(remove SVT, add half-depth of TOF)

Absorption Light nuclei in p+p and the BES

geant *does* know how to interact pbars, so one can test the absorption prescription using embedding data!

Uncovered problems in trs

unknown species was given a geantID=0, and then no energy loss, and then no rec. tracks Fix entailed changes to trs and StarClassLibrary to properly include light antinuclei... see RT Ticket #2157.

Lots of technical problems in many different codes.... (many thanks to Hiroshi, Xiangli, Geraldo, Xianglei, Gene, Jason, & Victor!)

Block 1:

dbar in p+p, 200 GeV, run-9 dbar in Au+Au, 200 GeV, run-10 dbar in Au+Au, 11.5 or 39, run-10

Block 2:

tbar in p+p, 200 GeV, run-9 dbar in Au+Au, 200 GeV, run-10 tbar in Au+Au, 11.5 or 39, run-10 pbar in p+p, 200 GeV, run-9 pbar in Au+Au, 200 GeV, run-10 pbar in Au+Au, 11.5 or 39, run-10 20101704DONE20101706DONE (final QA)Hope to start this very soon....

these will be exactly the same as the block 1 requests except simply change the GeantId in StPrepEmbedMaker.....

I also found some existing embedding productions laying around....

pbar	p+p	200GeV	20101701
pbar	Au+Au	39GeV	20103206
pbar	Au+Au	7.7GeV	20103604

Embedding

🗞 RICE 🥔 STAR 🛧

🕅 RICE 🥔 STAR 🖈

dbar efficiency follows pbar efficiency up to $\sim 0.5 \text{GeV/c}$ (?!?)

