Intra-event correlations and the statistical moments of the identified particle multiplicity distributions in the RHIC beam energy scan data collected by STAR

W.J. Llope for the STAR Collaboration
Rice University

Measured “net-proton” and “net-charge” multiplicity distributions may provide insight on the conserved B and Q quantum numbers.

Measure the shapes of multiplicity distributions as quantified by the moments: μ, σ^2, S, K

$S = \text{skewness}, K = \text{kurtosis}$

The products $S\sigma$ & $K\sigma^2$ are less volume dependent

Experimentally-measured moments products may be directly related to the susceptibility ratios (QCD order parameters) from the lattice theory. Values may relate to HG vs QGP phases...

In the NLSM, experimentally-measured moments products may also be proportional to powers of the correlation length. (critical opalescence) Divergent values may indicate the Critical Point...
No strong non-monotonicity seen, but there is an apparent dip at ~19.6-27 GeV

<table>
<thead>
<tr>
<th>√s_{NN} (GeV)</th>
<th><μ_B>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7</td>
<td>421</td>
</tr>
<tr>
<td>11.5</td>
<td>316</td>
</tr>
<tr>
<td>19.6</td>
<td>206</td>
</tr>
<tr>
<td>27</td>
<td>156</td>
</tr>
<tr>
<td>39</td>
<td>112</td>
</tr>
<tr>
<td>62.4</td>
<td>73</td>
</tr>
<tr>
<td>200</td>
<td>24</td>
</tr>
</tbody>
</table>

* Cleymans et al. PRC 73, 034905 (2006)
In this presentation, I will describe the comparison of the net-p and net-Q data to two data-driven techniques that explicitly break the intra-event correlations between N_{pos} and N_{neg}.

- Do intra-event correlations between N_{pos} and N_{neg} affect the measured net-X moments?
- Can the net-X moments be understood from the N_{pos} and N_{neg} distributions alone?

“Independent Random Variable (IRV) Cumulant Arithmetic”

A feature of cumulants is their additivity for pairs of independent random variables.

$$C_k(u+v) = C_k(u) + C_k(v)$$

for net-X, i.e. “u-v” with $u=N_{\text{pos}}$ and $v=N_{\text{neg}}$,

$$C_k(u-v) = C_k(u) + (-1)^k \times C_k(v)$$

$$S\sigma = C_3/C_2 \quad \text{and} \quad K\sigma^2 = C_4/C_2$$ \hspace{1cm} (C_1=\text{mean, } C_2=\text{variance})

“Sampled Singles”

Stochastically sample from the N_{pos} and N_{neg} distributions, forming N_{net} distributions from which one can calculate $S\sigma$ and $K\sigma^2$

Sampled Singles and IRV approach give the same results if former “oversampled” with weights …both/either can be called an “Independent Production” expectation

Other important “baselines” include

- **Poisson (Skellam)** – uncorrelated HG emission, calculable from $<N_{\text{pos}}>$ and $<N_{\text{neg}}>$ only

- **(N)BD** – sister functions to Poisson for which $\mu<\sigma^2$ (Neg. binomial) or $\mu>\sigma^2$ (binomial)

Corrected net-p $S\sigma$ and $K\sigma^2$ vs $\sqrt{s_{NN}}$ for 0-5% and 70-80% centrality

Independent production approaches reproduce the net-p moments products.
Efficiency-corrected net-p Kσ² vs centrality by \(\sqrt{s_{NN}} \)

IRV and sampled singles approaches (cyan) quantitatively reproduce the net-proton moments products at all beam energies and centralities…
Further exploring the moments products by deconstructing them…

The net-proton moments products can be understood using the p and pbar multiplicity distributions separately…

Intra-event correlations of N_p and N_{pbar} do not measurably affect the net-p moments products.

That is…

$$K\sigma^2_{(net-p)} = \frac{C_4(\text{net-p})}{C_2(\text{net-p})}$$

$$= \frac{[C_4(p)+C_4(pbar)]}{[C_2(p)+C_2(pbar)]}$$

Four quantities there.

Are the experimental values of $K\sigma^2_{(net-p)}$ driven by all four quantities equally? Or does one of these dominate?
Charge-separated uncorrected $K\sigma^2$ vs. centrality by $\sqrt{s_{NN}}$

$\sqrt{s_{NN}} < 27$ GeV ... $K\sigma^2$(net-p) = $K\sigma^2$(p)

$\sqrt{s_{NN}} \geq 39$ GeV ... $K\sigma^2$(pbar) > $K\sigma^2$(net-p) > $K\sigma^2$(p)

Uncorrected Au+Au
- • Measured p-\bar{p}
- △ Measured p
- ▲ Measured \bar{p}

Uncertainties are statistical only.
Uncorrected net-proton C_2 (variance) vs. centrality by $\sqrt{s_{NN}}$

- C_2 smoothly increases with N_{part}.
- C_2 changes with $\sqrt{s_{NN}}$.
- Uncertainties are statistical-only.

C_2 smoothly increases with N_{part}. ...changes with $\sqrt{s_{NN}}$.
Uncorrected net-proton C_4 vs. centrality by \sqrt{s}_{NN}

- $p\bar{p} C_4$ vs N_{part}, $\sqrt{s}_{NN} = 7.7$ GeV
- $p\bar{p} C_4$ vs N_{part}, $\sqrt{s}_{NN} = 11.5$ GeV
- $p\bar{p} C_4$ vs N_{part}, $\sqrt{s}_{NN} = 19.6$ GeV
- $p\bar{p} C_4$ vs N_{part}, $\sqrt{s}_{NN} = 27.0$ GeV

Uncorrected Au+Au
- Measured $p\bar{p}$
- Measured p
- Measured \bar{p}

Uncertainties are statistical-only

- Proton C_4 sags for 0-5% @ 19&27...
- Pbar C_4 increases smoothly...
Net-Charge (results from AGS-RHIC Users Meeting 2013, D. McDonald)

Strong intra-event correlations!
Net-proton moments products

Independent random variable cumulant arithmetic and the “sampled singles” approaches reproduce the experimentally-measured net-proton moments products nearly exactly…

• Implies intra-event correlations of N_p and $N_{p\bar{p}}$ do not have a measurable effect on the measured net-p moments products.

• Agreement is almost as good if one simply ignores the antiprotons.

• The dip with respect to Poisson near ~ 19.6 GeV is driven by the proton C_4 values…
 …proton C_2 smoothly increases with centrality and beam energy

\[K\sigma^2(\text{net-p}) = \frac{C_4(\text{net-p})}{C_2(\text{net-p})} = \frac{[C_4(p)+C_4(p\bar{p})]}{[C_2(p)+C_2(p\bar{p})]} \]

Net-charge moments products

• Net-charge moments products deviate slightly from all baselines in general.

• Independent production approaches deviate strongly from the experimental data for \simcentral collisions in the 62.4 and 200 GeV data sets.
Comparison of (N)BD to uncorrected net-proton C_4 vs. centrality by $\sqrt{s_{NN}}$

Uncorrected Au+Au
- Measured $p-\bar{p}$
- (N)BD $p-\bar{p}$
- Measured p
- (N)BD p
- Measured \bar{p}
- (N)BD \bar{p}

uncertainties are statistical-only

(N)BD $C_4 \neq$ data $C4$ for 0-5% @ 19 GeV…
On the apparent net-p dip near 19.6 GeV

J. Nagle, last talk at QM2012

Kurtosis < Poisson for $\sqrt{s_{NN}}$ just above CP?

M.A. Stephanov, Phys. Rev. Lett. 107, 052301 (2011)
On the apparent net-p dip near 19.6 GeV

J. Nagle, last talk at QM2012

what the NLSM would *actually* expect for a CP at $\sqrt{s_{NN}} \sim 15$ GeV
(15 GeV data on the way in upcoming Run 14!)

Functional form describes the (particle identified) multiplicity distributions ranging from NA22 & UA5 to PHENIX

Inputs:
mean (µ) & variance (σ²)

Then, the values of C_k, Sσ, & Kσ² are predicted.

µ<σ² ...NBD
µ=σ² ...Poisson
µ>σ² ...BD

If the mean is equal to the variance, a Poisson Distribution is used. The BD baseline for the moments products Sσ and Kσ² uses the parameter p, defined as p=1-σ²/µ, where µ is the mean and σ² is the variance. Then, the BD baseline for Sσ is given by

\[(S\sigma)^{BD} = 1 - 2p (\mu > \sigma^2), \quad (2.19)\]

and the BD calculation of the moments product Kσ² is

\[(K\sigma^2)^{BD} = 1 - 6p + 6p^2 (\mu > \sigma^2). \quad (2.20)\]

For the NBD baselines of the moments products Sσ and Kσ² the parameter p is defined as p=µ/σ². Then, the NBD baseline for Sσ is given by

\[(S\sigma)^{NBD} = (2 - p)/p (\mu < \sigma^2), \quad (2.21)\]

and the NBD calculation of the moments product Kσ² is

\[(K\sigma^2)^{NBD} = (6 - 6p + p^2)/p^2 (\mu < \sigma^2). \quad (2.22)\]
The only input is the 2D distributions of N_{pos} vs. centrality and N_{neg} vs. centrality, where $pos = p, K^+, q^+$ & $neg = \bar{p}, K^-, q^-$

With N_{net} and N_{tot} vs. centrality I can also independently produce the experimental results, with delta theorem error bars, efficiency corrections, etc…

Filled at exactly the same spot in the analysis codes where the deviates are saved

i.e. TH2Ds include the same track cuts, PID, and run&evt QA as the local analysis…
In every slice of \(\text{rmXcorr} \), sample one value of \(N_{\text{pos}} \) and one value of \(N_{\text{neg}} \), \(N_{\text{evt}} \) times.

In each sample at a given \(\text{rmXcorr} \), one then has a value for \(N_{\text{pos}} \) and \(N_{\text{neg}} \).

Then form \(N_{\text{net}} = N_{\text{pos}} - N_{\text{neg}} \) and \(N_{\text{tot}} = N_{\text{pos}} + N_{\text{neg}} \).

Fill similar 2D plots of \(N_{\text{net}} \) and \(N_{\text{tot}} \) vs. centrality.

And then extract the moments (products) and do the CBW corrections as usual…

Destroys all intra-event correlations between \(N_{\text{pos}} \) and \(N_{\text{neg}} \), reproduces singles distributions, & has the same statistical certainty as the data by construction…

cf. G. Torrieri et al.,