Extracting (μ_B, T) from Cumulants of Multiplicity Distributions

M. Stephanov, Rice Workshop, May 23-25, 2012

In the NLSM, experimentally-measured moments products are proportional to powers of the correlation length (critical opalescence)

Divergent values may indicate the Critical Point

It has thus been popular to measure the shapes of multiplicity distributions, as quantified by the moments, μ, σ^2, S, K, to search for the CP.

Decreased $1/VT^3$ dependence via $S\sigma = C_3/C_2$, $K\sigma^2 = C_4/C_2$

There is another analysis direction based on the multiplicity distribution shape information that can be pursued, and so far this direction is underexplored in STAR...

Use the cumulants to infer (μ_B, T)...

Are our net-p and net-q results “consistent”?

Have we sculpted the net-p and net-q results via the different cuts sets that we use for each?
The “standard” approach to infer \((\mu_B, T)\) from a data sample involves statistical hadronization models, such as THERMUS.

S. Wheaton et al., Comp. Phys. Comm., 180, 84 (2009)

At one \(\sqrt{s_{\text{NN}}} \) & centrality:
Measure the ratios of efficiency-corrected average multiplicities \((C_1)\) of identified particles in a specific kinematic region \(|y|<0.1\) for light hadrons

Then assume a (grand, strangeness, micro) canonical ensemble.

That assumption then allows the fitting of the measured ratios to functions that have some free parameters:
\[
\mu_B, T, \gamma_S, \gamma_Q, R, \text{ etc} ...
\]

Applicability of the approach evaluated by \(\chi^2\), use of other ensembles, etc.
STAR SHM results

Centrality dependence in GCE vs. SCE vs. μCE?
Effects of wider rapidity gate?
We have very mature results on the net-p and net-q multiplicity distribution cumulants. Use these plus Lattice QCD to infer \((\mu_B, T)\).

Frithjof Karsch, University of Houston Colloquium, Sept. 24, 2013

Determination of T and \(\mu_B\) from cumulant ratios

- in thermal equilibrium any two ratios of cumulants should allow to fix temperature and baryon chemical potential

\[
R_{n,m}^X = \frac{\chi_{n,\mu}^X}{\chi_{m,\mu}^X}, \quad X = B, Q, S
\]

NLO Taylor expansion

- ratios with \(n+m\) even or odd show different sensitivity to \(T\) and \(\mu_B\)

\[
R_{12}^X \equiv \frac{M_X}{\sigma_X^2} = \frac{\mu_B}{T} \left(R_{12}^{X,1} + R_{12}^{X,3} \left(\frac{\mu_B}{T} \right)^2 + \mathcal{O}(\mu_B^4) \right),
\]

\[
R_{31}^X \equiv \frac{S_X \sigma_X^3}{M_X} = R_{31}^{X,0} + R_{31}^{X,2} \left(\frac{\mu_B}{T} \right)^2 + \mathcal{O}(\mu_B^4),
\]

\[
M_X \sim \chi_1^X : \quad \text{mean}
\]
\[
\sigma_X^2 \sim \chi_2^X : \quad \text{variance}
\]
\[
S_X \sim \chi_3^X / (\chi_2^X)^{3/2} : \quad \text{skewness}
\]

\(\blacklozenge\) if fluctuations are sensitive to equilibrium physics at a unique \((T, \mu_B)\) pair
(\(\mu_B, T\)) from Moments

Ratios of Multiplicity Distribution Cumulants: \(R_{xy} = C_x/C_y\)

\[\frac{M_Q(\sqrt{s})}{\sigma_Q^2(\sqrt{s})} = \frac{\langle N_Q \rangle}{\langle (\delta N_Q)^2 \rangle} = \frac{\chi_1^Q(T, \mu_B)}{\chi_2^Q(T, \mu_B)} = R_{12}^{Q,1}(T)\mu_B + R_{12}^{Q,3}(T)\mu_B^3 + \ldots = \mathbb{R}_{12}^Q(T, \mu_B) \]

\[\frac{S_Q(\sqrt{s})\sigma_Q^3(\sqrt{s})}{M_Q(\sqrt{s})} = \frac{\langle (\delta N_Q)^3 \rangle}{\langle N_Q \rangle} = \frac{\chi_3^Q(T, \mu_B)}{\chi_1^Q(T, \mu_B)} = R_{31}^{Q,0}(T) + R_{31}^{Q,2}(T)\mu_B^2 + \ldots = \mathbb{R}_{31}^Q(T, \mu_B) \]

\(\text{baryometer, fixes} \ \mu_B^f\)

\(\text{thermometer, fixes} \ \mu_T^f\)

LO linear in \(\mu_B\)

LO independent of \(\mu_B\)

HIC

- mean: \(M_Q\)
- variance: \(\sigma_Q^2\)
- skewness: \(S_Q\)
- \(\delta N_Q = N_Q - \langle N_Q \rangle\)

LQCD

- STAR, PHENIX

- STAR

- generalized charge susceptibilities:

\[\chi_n^Q(T, \mu) = \frac{1}{VT^3} \frac{\partial^n \ln Z(T, \mu)}{\partial (\mu_Q/T)^n} \]
Basic approach: Measure R_{12} and R_{31}, then pick off μ_B/T and T from the Lattice results.

$$R^Q_{31} = S_Q \sigma_Q^3 / M_Q$$

$$R^Q_{12} = M_Q / \sigma_Q^2$$

<table>
<thead>
<tr>
<th>$S_Q \sigma_Q^3 / M_Q$</th>
<th>T^f [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 2</td>
<td>≤ 155</td>
</tr>
<tr>
<td>~ 1.5</td>
<td>~ 160</td>
</tr>
<tr>
<td>≤ 1</td>
<td>≥ 170</td>
</tr>
</tbody>
</table>

BNL-BI: PRL 109, 192302 (2012)

<table>
<thead>
<tr>
<th>M_Q / σ_Q^2</th>
<th>μ_B^f / T^f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01–0.02</td>
<td>0.1–0.2</td>
</tr>
<tr>
<td>0.03–0.04</td>
<td>0.3–0.4</td>
</tr>
<tr>
<td>0.05–0.08</td>
<td>0.5–0.7</td>
</tr>
</tbody>
</table>

for: $T^f \sim 160$ MeV
Results when using QM2012 net-q cumulants

Thermometer from R_{13}^Q

variation of $T^{f,ch}$ is < 5 MeV for $\sqrt{s_{NN}} > 19$ GeV as a first start, use the average value over $\sqrt{s_{NN}} = 19.6 - 200$ GeV

$\overline{R}_{31}^Q = 1.56(16)$

STAR preliminary Quak Matter 2012

$R_{31}^Q = S_Q \sigma_Q^3 / M_Q$

Baryometer from R_{21}^Q

$R_{12}^Q = M_Q / \sigma_Q^2$

S. Mukherjee, WWND 2013

Thermometer:
Reasonable agreement to lattice $T_c = 154(9)$ MeV

Baryometer:
Fair agreement of PHENIX data to HRG

$T^f = 158(7)$ MeV

$T_c(\mu_B=0) = 154(9)$ MeV
$T^{f,ch} = 160(5)$ MeV

\sqrt{s} [GeV]: 62.4

μ_B^f / T^f agree reasonably with $\mu_B^{f,ch} / T^{f,ch}$
(\(\mu_B, T\)) from Moments

Thermodynamic consistency

The values of \((\mu_B, T)\) from \(R_{xy}^B\) should be consistent with those from \(R_{xy}^Q\)

S. Mukherjee, WWND 2013

![Graph showing the relationship between \(R_{12}^Q/R_{12}^B\) and \(\mu_B/T\) for different temperatures.]

If the fluctuations are described by equilibrium thermodynamics, \(R_{12}^Q\) and \(R_{12}^B\) must contain identical information regarding \(T\) and \(\mu_B\).

However ...

currently STAR preliminary @ \(\sqrt{s_{NN}} = 200\) GeV: \(R_{12}^Q/R_{12}^P \approx 0.06\)

a problem!!
give inconsistent values for μ_B^f a problem !!
The Wuppertal-Budapest LQCD group has also recently investigated this direction.

FIG. 4 (color online). R_{12}^Q as a function of μ_B: the different colors correspond to the continuum extrapolated lattice QCD results, calculated at different temperatures. The three points correspond to preliminary STAR data for M_Q/σ_Q^2 at different collision energies: $\sqrt{s} = 27, 39, 62.4$, from Ref. [6].

FIG. 5 (color online). R_{31}^B: the colored symbols correspond to lattice QCD simulations at finite N_f. The black points correspond to the continuum extrapolation.

TABLE I. Freeze-out baryon chemical potentials vs the corresponding collision energy of the three STAR measurements from Ref. [6]. The errors come from the uncertainty of the freeze-out temperature, the lattice statistics, and the experimental error.

<table>
<thead>
<tr>
<th>\sqrt{s} [GeV]</th>
<th>μ_B^f [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.4</td>
<td>44(3)(1)(2)</td>
</tr>
<tr>
<td>39</td>
<td>75(5)(1)(2)</td>
</tr>
<tr>
<td>27</td>
<td>95(6)(1)(5)</td>
</tr>
</tbody>
</table>

$\mu_B^f = 0_{\text{lat}} 0_{\text{exp}}$
My goals

1. Use our latest efficiency-corrected results for $R_{xy}^{B,Q}$ to extract (μ_B, T)
2. Produce new values of $R_{xy}^{B,Q}$ using different centrality definitions to allow more consistent kinematic acceptances for R_{xy}^{B} and R_{xy}^{Q}

Now we have efficiency-corrected values! Effect of kinematic acceptance (different for net-p and net-q)?

F. Karsch, private communication

Do Not Circulate

net-p
- refmult3corr (π&K, $|y|<1.0$)
- $|y|<0.5$, $0.4<P_T<0.8$
- $n_\sigma(p)<2$
- Nhitsfit>20, no Nhitsdedx cut
- DCAglobal<1
- $|ZvtxTPC-ZvtxVPD|<3$ (≥ 39 GeV)

net-q
- refmult2corr (chgd, $0.5<|\eta|<1$)
- $|\eta|<0.5$, $0.2<P_T<2.0$ -spallation p
- Nhitsfit>20, Nhitsdedx>10
- DCAglobal<1
- $|ZvtxTPC-ZvtxVPD|<4$ (≥ 39 GeV)
$R_{12} = \frac{C_1}{C_2}$, net-p, $|y|<0.5$, refmult3corr($|y|<1$)

Good sensitivity to μ_B/T for $\sqrt{s_{NN}} \geq 39$ GeV
$R_{31} = \frac{C_3}{C_1}$, net-p, $|y| < 0.5$, refmult3corr($|y| < 1$)

Very little T dependence.
Large uncertainties when comparing to LQCD.
$R_{12} = C_1/C_2$, net-q, $|\eta| < 0.5$, refmult2corr(0.5$<|\eta|<1$)

Good sensitivity to μ_B/T for $\sqrt{s_{NN}} \geq 27$ GeV
(µ_B, T) from Moments

$R_{31} = \frac{C_3}{C_1}$, net-q, $|\eta| < 0.5$, refmult2corr(0.5 < $|\eta| < 1$)

Large uncertainties.
Data often outside LQCD-allowed area.
Cumulants+LQCD imply μ_B/T decreases as centrality decreases (similar to SHM w/ GCE)

μ_B/T from net-p and net-q diverge as $\sqrt{s_{NN}}$ decreases.

μ_B/T from net-p $> \mu_B/T$ from net-q

SHM results similar to the Cumulants+LQCD values (in between net-p & net-q)
Net-q values are all over the map w.r.t. LQCD allowed range...

Net-p values allow an extraction of T from R_{31}Q, but not with much sensitivity...
Summary so far:

Used latest efficiency-corrected net-p and net-q moments products to constrain μ_B/T & T using LQCD predictions. This is an alternative to SHM approaches...

Reasonable sensitivity to μ_B/T from R_{12}^{net-p} and R_{12}^{net-q}...

Not much sensitivity to T from R_{31}^{net-p}...

Data for R_{31}^{net-q} has large errors and are often outside the LQCD allowed range...

μ_B/T from R_{12}^{net-p} & R_{12}^{net-q} increases as the centrality increases...

Similar to the centrality dependence from the STAR SHM results with the GCE...

μ_B/T from R_{12}^{net-p} & R_{12}^{net-q} are inconsistent, and become more so as $\sqrt{s_{NN}}$ decreases...

Is this a result of the different kinematic cuts used in the net-p and net-q analyses?

<table>
<thead>
<tr>
<th>net-p</th>
<th>net-q</th>
</tr>
</thead>
<tbody>
<tr>
<td>refmult3corr (π&K, $</td>
<td>y</td>
</tr>
<tr>
<td>$</td>
<td>y</td>
</tr>
<tr>
<td>$n_o(p)<2$</td>
<td>Nhitsfit>20, no Nhitsdedx cut</td>
</tr>
<tr>
<td>Nhitsfit>20, no Nhitsdedx cut</td>
<td>DCAglobal<1</td>
</tr>
<tr>
<td>DCAglobal<1</td>
<td>DCAglobal<1</td>
</tr>
<tr>
<td>$</td>
<td>ZvtxTPC-ZvtxVPD</td>
</tr>
</tbody>
</table>

To explore this, I need centrality definitions that do not use the TPC...

...and/or should not strongly autocorrelate with the total multiplicity of TPC primaries...
With a centrality definition that does not use the TPC, I can measure the net-p and net-q cumulants using the same centrality definition (√), more similar kinematic cuts (√), and a less restrictive pseudorapidity range for net-q (√)...

Recall my earlier studies on alternative centrality definitions (2011):
http://wjllope.rice.edu/fluct/protected/cent_slides_20110817.pdf
http://wjllope.rice.edu/fluct/protected/cent_slides_20110914.pdf

At that time, I studied BEMC ΣE, and ZDC vs. BBC.

BEMC ΣE showed some energy scale jumps in the low-$\sqrt{s_{NN}}$ BES data, but at the moment I am most interested in the 200 GeV data, where the peds and gains are in good shape.

Will explore:
- BBC ΣADC
- BEMC ΣE
- BEMC N_{towers} (ADC > pedavg+4*pedrms)
- ZDC ΣADC vs. BBC ΣADC

Of course, this same code can also still use the “standard” refmulfXcorr and the same cuts used in the net-p and net-q papers to check the consistency, and I can also explore the sensitivity of the results to different cuts and centrality selections.
New !TPC centrality, 200 GeV

BEMC ΣE

BEMC N_{towers}

BBC ΣADC

rejected w/ $\pm 5\sigma$ cut
Glauber calculation for BBC ΣADC, 200 GeV

μ_B, T from Moments

Entries 4032810

ΣADC, $m_{min}=100$, $n_{pp}=2.500$, $k=0.60$, $x=0.14$

consteff=0, eff=0.14 \rightarrow Npt= 750, χ^2/Npt= 9.60
Glauber calculations for BEMC variables, 200 GeV
{DS} unique identifier for year and $\sqrt{s_{NN}}$

- **Data**
- **Compiled C++ code**

anpp:
- select minbias trigger, apply $|Z_{vtx}|$ cut.
- calculate refmultX
- save event info and all primary tracks to TTrees

fluct:
- fill 4 “base” TH2Ds for specific track cut sets
 - (net,tot, pos, neg) vs. centrality variable

mix:
- read TH2Ds from net-p paper, net-q paper, or fluct
- calculate Cx, Rxy vs. centrality variable
- efficiency corrections
- CBW averaging
- bootstrap errors
- Sampled singles/IRV cumulant arithmetic

qa:
- bad runs: 30 variables, check 6, require ≥ 4 vars fail
- bad events: 10 2D correlation plots, check 2, ±$N\sigma$ cuts

fluctplot:
- collect results from all sources and make final plots
- make connections to LQCD

BulkCorr PWG Meeting, 11/27/2013
(μₜ, T) from Moments

μₜ/T from fluct net-p and net-q

R_{12}^{net-p} is quite stable vs. centrality variable used, R_{12}^{net-q} is not...

fluct code reproduces net-p paper Cₓ and R_{12}, but not net-q paper Cₓ and R_{12}...
Used latest efficiency-corrected net-p and net-q moments products to constrain μ_B/T & T using LQCD predictions. This is an alternative to SHM approaches...

- Reasonable sensitivity to μ_B/T from $R_{12}^{\text{net-p}}$ and $R_{12}^{\text{net-q}}$
- Not much sensitivity to T from $R_{31}^{\text{net-p}}$
- Data for $R_{31}^{\text{net-q}}$ has large errors and are often outside the LQCD allowed range

μ_B/T from $R_{12}^{\text{net-p}}$ & $R_{12}^{\text{net-q}}$ increases as the centrality increases...

Similar to the centrality dependence from the STAR SHM results with the GCE

μ_B/T from $R_{12}^{\text{net-p}}$ & $R_{12}^{\text{net-q}}$ are inconsistent, and become more so as $\sqrt{s_{NN}}$ decreases...

There are two recent PRLs from two major LQCD collaborations, who will soon use the new efficiency-corrected net-p and net-q paper results to constrain μ_B/T & T

Aside from the CP search, do the two moments papers tell a consistent story at high $\sqrt{s_{NN}}$?

Four new centrality definitions based on:

- BBC Σ_{ADC}, BEMC Σ_{E}, BEMC N_{towers}, ZDC Σ_{ADC} vs. BBC Σ_{ADC}

These should allow new (& more consistent?) kinematic cuts for net-p and net-q using kinematically-decoupled centralities allowing “the whole TPC” for the moments analyses.

To-do

- Explore new net-p and net-q cuts sets that might result in a consistent story re: μ_B/T & T
- Can I select the low-$(N_{\text{pos}}||N_{\text{neg}})$ tails in net-q and trace the “sampling divergence”?
- Also, Glauber for ZDC vs. BBC, 62 GeV & 39 GeV, mixed ratios, plus your suggestions...