```
            Update on net-K C C / C 
            w.j. llope, 5/7/2014
            "STAR Preliminary" results (QM2012, D. McDonald):
            http://arxiv.org/abs/1210.7023
            Previous presentations w/ my results:
http://wjllope.rice.edu/fluct/protected/bulkcorr_20140423_updated.pdf
```

Here: A quick comparison to Amal's latest results for:
Uncorrected $\mathrm{C}_{4} / \mathrm{C}_{2}$
Corrected $\mathrm{C}_{4} / \mathrm{C}_{2}$, using Amal's total efficiencies
Results from my codes include 14.5 GeV , and (N)BD \& sampled singles

net-K $\mathrm{C}_{4} / \mathrm{C}_{2}$ uncorrected

- QM2012

QM2012 results are the official "STAR Preliminary" and are avg(Gary,dmac)
net-K $\mathrm{C}_{4} / \mathrm{C}_{2}$
net-K QM2012 $\operatorname{avg}\left(\right.$ Gary, dmac) $\mathrm{C}_{4} / \mathrm{C}_{2}$ compared to dmac part of average

$$
\text { net-K } \mathrm{C}_{4} / \mathrm{C}_{2}
$$ uncorrected

- QM2012
- dmac

Gary and dmac results are very consistent, except $62.4 \mathrm{GeV} 0-5 \%$ and 200 GeV

My values agree rather well with QM2012 results, I use bootstrap errors

net-K $\mathrm{C}_{4} / \mathrm{C}_{2}$

updated efficiencies are 4-5\% lower than those he used last week... these efficiencies are a lot lower than those in the net-p and net-q papers resulting in much larger corrections and hugely increased uncertainties...

Presented my results on net- $\mathrm{K}_{4} / \mathrm{C}_{2}$ using data from 2010, 2011, and $2014(14.5 \mathrm{GeV})$ Uncorrected and corrected...
Comparisons to (N)BD and Sampled singles...

One difference in cuts: Amal uses $0.2<\mathrm{p}_{\mathrm{T}}<1.6$, and I use $0.2<\mathrm{p}<1.6 \ldots$
...comparisons to Amal's results:
Slide 9: uncorrected C_{4} / C_{2} vs. centrality and root-s
uncertainties generally look quite similar
largest differences for $<\sim 50 \%$ central at 39 and 62.4 GeV
Slide 10: uncorrected $\mathrm{C}_{4} / \mathrm{C}_{2}$ vs. root-s, $0-5 \%$
Generally good agreement except perhaps 39 and $62.4 \mathrm{GeV}(\sim 2 \sigma)$
$\sim 1.5 \sigma$ difference at 19.6 GeV
Slide 12: corrected $\mathrm{C}_{4} / \mathrm{C}_{2}$ vs. centrality and root-s
uncertainties "similar" but there are some differences of $\sim 50 \%$ or so
big differences in uncertainties at 200 GeV
corrected values at 39 and 62.4 seem closer than uncorrected ones were... (?!?)
Slide 13: uncorrected $\mathrm{C}_{4} / \mathrm{C}_{2}$ vs. root-s, $0-5 \%$
Generally decent agreement, values at 19.6 GeV within $\sim 1.5 \sigma$
Really low efficiency values (Tracking+TOF) result in large corrections and uncertainties!

One CBW-averages each of these to produce the final corrected cumulants... the individual correction terms resulting in these plots are shown on the next page...

Note all terms are in the range $\sim \pm 20$

same plot for net-K...

Note all terms are in the range $\sim \pm$ few thousand

10

10
100_{smax} (GeV)

$1000_{\text {nax }}(\mathrm{GeV})$

10
uncorrected cumulants increase with root-s logarithmically... higher values for run-11's 19.6 and 27 GeV (improved tracker)...

