net-proton moments compared to "IRV" cumulant arithmetic
w.j. llope
bulkcorr PWG meeting
July 3, 2013

Backstory in recent bulkcorr presentations:

```
http://wjllope.rice.edu/fluct/protected/moments_20130417.pps
http://wjllope.rice.edu/fluct/protected/moments_20130626.pps
```

"Sampled singles" breaks the intra-event correlations "numerically/stochastically" The stability of the sampled singles results $v s$. the TRandom3 seed is greatly improved by "oversampling," with the only expense being CPU time.

This sampled singles approach breaks any existing intra-event correlations between Np and Npbar by construction.
...Excellent reproduction of the experimentally measured net-p moments products.
There is however an approach to calculate the moments products that also assumes the absence of intra-event correlations that requires no sampling.

This approach is based on the additive properties of cumulants.

We are interested in measuring $\mathrm{S} \sigma$ and $\mathrm{K} \sigma^{2}$ for net-protons here.
These quantities are related to the cumulants, C_{k}, as follows.

$$
\mathrm{So}=\mathrm{C}_{3} / \mathrm{C}_{2} \quad \text { and } \quad \mathrm{Ko}^{2}=\mathrm{C}_{4} / \mathrm{C}_{2} \quad\left(\mathrm{C}_{1}=\text { mean }, \mathrm{C}_{2}=\text { variance }\right)
$$

where $\mathrm{C}_{\mathbf{k}}$ is a "cumulant."
A feature of cumulants is their additivity for pairs of independent random variables. i.e. given independent random variables u and v, then

$$
C_{k}(u+v)=C_{k}(u)+C_{k}(v)
$$

But here, we are interested in S σ and $K \sigma^{2}$ for net-p, i.e. " $u-v$ " with $u=N p$ and $v=N p b a r$
In this case, $\mathrm{C}_{\mathbf{k}}(\mathrm{u}-\mathrm{v})=\mathrm{C}_{\mathbf{k}}(\mathrm{u})+(-1)^{\mathbf{k} \times \mathrm{C}_{\mathbf{k}}(\mathrm{v})}$
This relation will only hold if $u(N p)$ and $v(N p b a r)$ are random and independent variables.
So, here I'll calculate $S \sigma$ and $K \sigma^{2}$ using the values of $C_{k}(u-v)$ via $C_{k}(u)$ and $C_{k}(v)$
Tests the importance of intra-event correlations of Np and Npbar that requires no stochastic sampling. The information used here comes only from the singles distributions.

How does this approach compare to the sampled singles approach? and to the data?
moments and IRV Math

Uncorrected Au+Au

- Measured(WJL)
- Measured(XFL)
- IRV C_{k} arithmetic Sampled Singles (N)BD
using nrepeats $=81$ for the sampled singles here

Bulkcorr PWG meeting, July 3, 2013
moments and IRV Math

Uncorrected Au+Au

- Measured(WJL)
- Measured(XFL)
- IRV C ${ }_{k}$ arithmetic Sampled Singles (N)BD

Bulkcorr PWG meeting, July 3, 2013

Sampled Singles and IRV $\mathrm{C}_{\mathbf{k}}$ Math reproduce experimental S σ to $\sim 1.5 \%$, with rms $\sim 1.1 \%$ Sampled Singles and IRV C $\mathbf{k}_{\mathbf{k}}$ Math reproduce experimental Ko^{2} to $<0.1 \%$, with $\mathrm{rms} \sim 1.5 \%$

Now we know that there is no aspect of the net-proton moments products that cannot be understood in terms of the p and pbar multiplicity distributions themselves.

That is...
$K \sigma^{2}($ net-p)

$$
\begin{aligned}
& =C_{4}(\text { net-p }) / C_{2}(\text { net-p }) \\
& =\left[\mathrm{C}_{4}(\mathrm{p})+\mathrm{C}_{4}(\text { pbar })\right] /\left[\mathrm{C}_{2}(\mathrm{p})+\mathrm{C}_{2}(\text { pbar })\right]
\end{aligned}
$$

Four terms there.
Are the experimental values of $K \sigma^{2}($ net-p) driven by all four terms equally?

Charge-separated $K \sigma^{2}$ vs. centrality by ${\sqrt{s_{N N}}}$

Uncorrected Au+Au	
\bullet	Measured $p-\bar{p}$
Δ	Measured p
∇	Measured \bar{p}

(2)RICE STAR

Bulkcorr PWG meeting, July 3, 2013

Bulkcorr PWG meeting, July 3, 2013

Sampled singles approach reproduces the experimental data points when "oversampled"
One can also calculate the values of $\mathrm{S} \sigma$ and $\mathrm{K} \sigma^{2}$ assuming Np and Npbar are random and independent via the additivity properties of cumulants.

This approach requires no sampling.
The "IRV" (independent random variable) cumulant arithmetic reproduces the

- (oversampled) sampled singles results, which is stochastic.
- the experimental values.

This should lend confidence to the sampled singles approach and underscore the unimportance of ($\mathrm{Np}, \mathrm{Npbar}$) intra-event correlations to net-p moments

Re: the "apparent dip" for $0-5 \%$ and $19.6 \& 27 \mathrm{GeV} \ldots$.
Perfectly reproduced by the Sampled Singles and IRV $\mathrm{C}_{\mathbf{k}}$ arithmetic approaches...
Seems to come entirely from the proton $\mathrm{C}_{4} \ldots$ proton C_{2} increases \sim normally $(\mathrm{N}) \mathrm{BD}$ does not show this dip - but note that the input to the (N)BD is C_{1} and $\mathrm{C}_{2} \ldots$

$$
\begin{aligned}
\mathrm{K} \sigma^{2}(\text { net-p }) & =\mathrm{C}_{4}(\text { net-p }) / \mathrm{C}_{2}(\text { net-p }) \\
& =\left[\mathrm{C}_{4}(\mathrm{p})+\mathrm{C}_{4}(\text { pbar })\right] /\left[\mathrm{C}_{2}(\mathrm{p})+\mathrm{C}_{2}(\text { pbar })\right]
\end{aligned}
$$

I am now exploring some of these same aspects with UrQMD, including efficiencies...

BACKUP SLIDES

FIG. 2: Centrality dependence of the cumulants of ΔN_{p} distributions for $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{\mathrm{NN}}}=7.7,11.5,19.6$, $27,39,62.4$, and 200 GeV . The lines indicate the linear fits. Error bars are statistical and caps are systematic errors.

$K \sigma^{2}$ Ratios including (N)BD

- Data/SampSing
- Data/IRV C ${ }_{k}$ Math
- Data/(N)BD

Uncorrected Au+Au

- Measured p-p
- Measured p
v Measured $\overline{\mathrm{p}}$
C_{3} smoothly... increasing w/ Npart decreasing $\mathrm{w} /{\sqrt{\mathrm{s}_{\mathrm{NN}}}}$

