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Data from D. McDonald

Motivation:
-- Transport model view of Ifspectra centrality dependent (<pz>,<T>)...
-- Explore bulkcorr assumption that centrality selection alone tightly constrains (pg,T)...
-- Explore possibility of constraining (pg,T) event-by-event with suitable cuts...
e.g. net and total pion moments products gated on pbar/p...

This is a follow-up to last week’s presentation:
http://wjllope.rice.edu/fluct/protected/urgmdthermus 20120905.pdf

Here:
..in UrQMD+Thermus (E-by-E and in 1fm/c steps), constrain pg and yg, 2 par fit, GCE
..on the Number of degrees of freedom (with Evan Sangaline)

...data+Thermus (with Daniel McDonald)
..STAR acceptance- & efficiency-filtered UrQMD+Thermus (eff from Evan Sangaline)
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UrQMD+Thermus Approach and codes

UrQMD 3.3pl
Default parameters, only set impact parameter range and ecm only
centrality set on impact parameter in “standard” percentages assuming b, . =14fm
output in 1 fm/c timesteps in each event
500-800 timesteps total depending on root-s
in each timestep, ignore spectators
and count multiplicity of 20 different particles (light hadrons and hyperons)

Thermus
Standalone application that reads the UrQMD files and
fits the multiplicity ratios in every timestep in every event
Grand Canonical Ensemble, fit parameters: (T, pg, g, ¥s)
12 ratios considered (n+, K&, p£, A+)
Mult errors in each time step & evt taken as Poisson (~VN) — but not that important
Also fit “averaged events” (in a given centrality bin) in each time step

Can thus
plot the trajectories of individual events in (pg, T) space

plot the trajectories of averaged events in (g, T) space
plot the distributions of (T, pg, L, Ys) in centrality-selected events
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UrQMD+Thermus Constrain g and g and Fit (T, pg), GCE

In previously presented slides, (T, ug pg vs) were allowed to vary freely...
Resulted in some events with yq pegged at 1, and others w/ low values
and two peaks in pg for non-peripheral collisions at low root-s
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now constrain (ug vg) values to the
red curves and fit only (T, pg)....
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UrQMD+Thermus

Constrain g and v and Fit (T, pg), GCE
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0-5%, 5-10%, 10-20% give
~same T distributions...

<T> decreases as b decreases...
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UrQMD+Thermus

Constrain g and v and Fit (T, pg), GCE
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UrQMD+Thermus Constrain g and yg and Fit (T, pg), GCE, Event-Avg Trajectories
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UrQMD+Thermus
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(anti-p/p) vs u, (GeV)

error bars here are
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Constrain g and v and Fit (T, pg), GCE

Here: 0-5% central

trend holds for less central events
w/ non-zero pbar and p multiplicities

pbar/p = exp(-14uy)

This 1s the same trend as seen
in the 4 parameter fit...
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UrQMD-+Thermus ND OF

I<N -
i=1 !
l.e. for n*,K*,p* —> up to N=6 non-zero yields —> 15 non-zero ratios possible

For N non-zero yields, one can form > ratios...

Of these 15 non-zero ratios from N non-zero yields, N-1 are independent...
Now, | am only fitting events if N-1> N,

Evan’s simulation: m = meas (vector with k values)
how probable is it to measure b if normal distributed | b = model (vector with k values)
with means m and covariance C. C = meas covariance (kxk matrix)
(b-m)TC-1(b-m) is %2 distributed with k DOF v = meas variances (diagonal of C)
only yields.... all ratios....
k=5 measurements are independent plot diagonal-only ¥? sum for 5! ratios
plot diagonal-only x? sum ...mean~10, k-l1<mean<5!
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UrQMD+Thermus data+Thermus

Used same Thermus code to fit experimental ©*,K*,p* yield ratios event-by-event

Yields from Daniel McDonald
Detailed bad-run and bad-event rejection
Same event and track cuts as he uses in his moments analyses
Centrality from refmult2corr

dE/dx+TOF plus spallation P cut for p
N=6 n*,K*,p*yields calculated for all directly identified tracks with |n|<0.5

But, BTW, there is a problem re: feeddown contributions to the observed yields....
Thermus can be run in two modes.
- No Decays: i.e. Input yields do not include any feeddown contributions
(this is how | appropriately run the UrQMD+Thermus simulations)
- Allow Decays: 1.e. Input yields include 100% of the possible feeddown
from all particles known to Thermus (fit or not) with known branching fractions

AFAIK, our data is not consistent with either case
we can estimate feeddown but we don’t generally measure all the necessary parent yields

or we can completely ignore feeddown, but there is typically a 1-3fm dca cut applied

...I’ll just run Thermus in both modes and will provide both sets of results...
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UrQMD+Thermus ug from data+Thermus fits: 0-5%, 5-10%, and 10-20% centrality only

Here, using 4 parameter fits — which look fine in general — non-zero ratios are reproduced...
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UrQMD+Thermus 1 from data+Thermus fits, Complete feeddown

FO MB by \/SNN’ 0-5%
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UrQMD+Thermus

ug from data+Thermus fits, Zero feeddown
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UrQMD+Thermus

- (anti-p/p) vs us(GeV)

complete feeddown

data+Thermus fits, 0-5% central
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...same pbar/p=exp(-14py) trend 1s seen when fitting the yields from the experimental data...
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UrQMD+Thermus data+Thermus fits, complete feeddown, T vs. refmult2corr
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UrQMD+Thermus data+Thermus fits, complete feeddown, pg vs. refmult2corr
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UrQMD+Thermus data+Thermus fits, complete feeddown, pg vs. refmult2corr
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UrQMD+Thermus

0.9

Ys vs b, \[sNN= 7.7GeV

data+Thermus fits, complete feeddown, y vs.

refmult2corr
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UrQMD+Thermus Towards filtered UrQMD+Thermus simulations...

In progress now: Apply “STAR” acceptance & efficiency filter to UrQMD

Compare perfect, 4x, participant-only simulation results to those we might measure E-by-E...
refmult, refmult2 and refmult3 vs. impact parameter with and without the filter
yields in [n|<0.5, P:>0.2 GeV, and including a parameterized tracking efficiency

(parameterized tracking efficiencies from Evan Sangaline)

eff " vs. (refmult,PT) eff K vs. (refmult,P_) eff Pvs. (refmult,P.)

mm}_@ |
\l\"iilllll

jobs running now...

plOt Xperfect Vs Xmeas
where X=T, g, U, Vs
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UrQMD+Thermus Summary

Perfect 4x participant-only UrQMD+Thermus simulations:
Constraining (pg vg) values and fitting only (T, pg) makes the fits more stable...
Significant overlap in TD pars for ~3 most central bins remains
~central selection alone does not tightly constrain (T, pg)...

pbar/p = exp(-14pp)

Changed how N 1s calculated for each fit
Require sufficient number of non-zero yields: N-1=2N_ .

Began to fit the experimental yields E-by-E
TD parameter distributions are very wide, ~central bins are very similar...
~central selection alone does not tightly constrain (T, pg)...

pbar/p = exp(-14pug)

To-do

Plots from application of STAR acceptance & efficiency filter and direct comparison
of the TD pars event-by-event

GCE vs SCE in perfect detector and STAR detector simulations

How to handle the feeddown question?

Implement pbar/p gating in net- and total-pion moments analyses
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