J / ψ production at high transverse momenta in $p+p$ and $\mathbf{C u}+\mathbf{C u}$ collisions at $\sqrt{s_{\mathrm{NN}}}=$ 200 GeV

B. I. Abelev, ${ }^{8}$ M. M. Aggarwal, ${ }^{30}$ Z. Ahammed, ${ }^{47}$ B. D. Anderson, ${ }^{18}$ D. Arkhipkin, ${ }^{12}$ G. S. Averichev, ${ }^{11}$ J. Balewski, ${ }^{22}$ O. Barannikova, ${ }^{8}$ L. S. Barnby, ${ }^{2}$ J. Baudot, ${ }^{16}$ S. Baumgart, ${ }^{52}$ D. R. Beavis, ${ }^{3}$ R. Bellwied, ${ }^{50}$ F. Benedosso, ${ }^{27}$ M. J. Betancourt, ${ }^{22}$ R. R. Betts, ${ }^{8}$ A. Bhasin, ${ }^{17}$ A. K. Bhati, ${ }^{30}$ H. Bichsel, ${ }^{49}$ J. Bielcik, ${ }^{10}$ J. Bielcikova, ${ }^{10}$ B. Biritz, ${ }^{6}$ L. C. Bland, ${ }^{3}$ M. Bombara, ${ }^{2}$ B. E. Bonner, ${ }^{36}$ M. Botje, ${ }^{27}$ J. Bouchet, ${ }^{18}$ E. Braidot,,${ }^{27}$ A. V. Brandin, ${ }^{25}$ E. Bruna,,52 S. Bueltmann, ${ }^{29}$ T. P. Burton, ${ }^{2}$ M. Bystersky, ${ }^{10}$ X. Z. Cai, ${ }^{40}$ H. Caines, ${ }^{52}$ M. Calderón de la Barca Sánchez, ${ }^{5}$ O. Catu, ${ }^{52}$ D. Cebra, ${ }^{5}$ R. Cendejas, ${ }^{6}$ M. C. Cervantes, ${ }^{42}$ Z. Chajecki, ${ }^{28}$ P. Chaloupka, ${ }^{10}$ S. Chattopadhyay, ${ }^{47}$ H. F. Chen, ${ }^{38}$ J. H. Chen, ${ }^{18}$ J. Y. Chen, ${ }^{51}$ J. Cheng, ${ }^{44}$ M. Cherney, ${ }^{9}$ A. Chikanian,,52 K. E. Choi, ${ }^{34}$ W. Christie, ${ }^{3}$ R. F. Clarke, ${ }^{42}$ M. J. M. Codrington, ${ }^{42}$ R. Corliss, ${ }^{22}$ T. M. Cormier, ${ }^{50}$ M. R. Cosentino, ${ }^{37}$ J. G. Cramer, ${ }^{49}$ H. J. Crawford, ${ }^{4}$ D. Das, ${ }^{5}$ S. Dash, ${ }^{13}$ M. Daugherity, ${ }^{43}$ L. C. De Silva, ${ }^{50}$ T. G. Dedovich, ${ }^{11}$ M. DePhillips, ${ }^{3}$ A. A. Derevschikov, ${ }^{32}$ R. Derradi de Souza, ${ }^{7}$ L. Didenko, ${ }^{3}$ P. Djawotho, ${ }^{42}$ S. M. Dogra, ${ }^{17}$ X. Dong, ${ }^{21}$ J. L. Drachenberg, ${ }^{42}$ J. E. Draper, ${ }^{5}$ J. C. Dunlop, ${ }^{3}$ M. R. Dutta Mazumdar, ${ }^{47}$ W. R. Edwards, ${ }^{21}$ L. G. Efimov, ${ }^{11}$ E. Elhalhuli, ${ }^{2}$ M. Elnimr, ${ }^{50}$ V. Emelianov,,${ }^{25}$ J. Engelage, ${ }^{4}$ G. Eppley, ${ }^{36}$ B. Erazmus, ${ }^{41}$ M. Estienne, ${ }^{41}$ L. Eun, ${ }^{31}$ P. Fachini, ${ }^{3}$ R. Fatemi, ${ }^{19}$ J. Fedorisin, ${ }^{11}$ A. Feng, ${ }^{51}$ P. Filip, ${ }^{12}$ E. Finch, ${ }^{52}$ V. Fine, ${ }^{3}$ Y. Fisyak, ${ }^{3}$ C. A. Gagliardi, ${ }^{42}$ L. Gaillard, ${ }^{2}$ D. R. Gangadharan, ${ }^{6}$ M. S. Ganti, ${ }^{47}$ E. J. Garcia-Solis, ${ }^{8}$ A. Geromitsos, ${ }^{41}$ F. Geurts, ${ }^{36}$ V. Ghazikhanian, ${ }^{6}$ P. Ghosh, ${ }^{47}$ Y. N. Gorbunov, ${ }^{9}$ A. Gordon, ${ }^{3}$ O. Grebenyuk, ${ }^{21}$ D. Grosnick, ${ }^{46}$ B. Grube, ${ }^{34}$ S. M. Guertin, ${ }^{6}$ K. S. F. F. Guimaraes, ${ }^{37}$ A. Gupta, ${ }^{17}$ N. Gupta, ${ }^{17}$ W. Guryn, ${ }^{3}$ B. Haag, ${ }^{5}$ T. J. Hallman, ${ }^{3}$ A. Hamed, ${ }^{42}$ J. W. Harris, ${ }^{52}$ W. He, ${ }^{15}$ M. Heinz,,${ }^{52}$ S. Heppelmann, ${ }^{31}$ B. Hippolyte, ${ }^{16}$ A. Hirsch, ${ }^{33}$ E. Hjort, ${ }^{21}$ A. M. Hoffman, ${ }^{22}$ G. W. Hoffmann, ${ }^{43}$ D. J. Hofman, ${ }^{8}$ R. S. Hollis, ${ }^{8}$ H. Z. Huang, ${ }^{6}$ T. J. Humanic, ${ }^{28}$ L. Huo, ${ }^{42}$ G. Igo, ${ }^{6}$ A. Iordanova, ${ }^{8}$ P. Jacobs, ${ }^{21}$ W. W. Jacobs, ${ }^{15}$ P. Jakl, ${ }^{10}$ C. Jena, ${ }^{13}$ F. Jin, ${ }^{40}$ C. L. Jones, ${ }^{22}$ P. G. Jones, ${ }^{2}$ J. Joseph, ${ }^{18}$ E. G. Judd, ${ }^{4}$ S. Kabana, ${ }^{41}$ K. Kajimoto, ${ }^{43}$ K. Kang, ${ }^{44}$ J. Kapitan, ${ }^{10}$ D. Keane, ${ }^{18}$ A. Kechechyan, ${ }^{11}$ D. Kettler, ${ }^{49}$ V. Yu. Khodyrev, ${ }^{32}$ D. P. Kikola, ${ }^{21}$ J. Kiryluk, ${ }^{21}$ A. Kisiel, ${ }^{28}$ S. R. Klein, ${ }^{21}$ A. G. Knospe,,${ }^{52}$ A. Kocoloski, ${ }^{22}$ D. D. Koetke, ${ }^{46}$ M. Kopytine, ${ }^{18}$ W. Korsch, ${ }^{19}$ L. Kotchenda, ${ }^{25}$ V. Kouchpil, ${ }^{10}$ P. Kravtsov, ${ }^{25}$ V. I. Kravtsov, ${ }^{32}$ K. Krueger, ${ }^{1}$ M. Krus, ${ }^{10}$ C. Kuhn, ${ }^{16}$ L. Kumar, ${ }^{30}$ P. Kurnadi, ${ }^{6}$ M. A. C. Lamont, ${ }^{3}$ J. M. Landgraf, ${ }^{3}$ S. LaPointe, ${ }^{50}$ J. Lauret, ${ }^{3}$ A. Lebedev, ${ }^{3}$ R. Lednicky, ${ }^{12}$ C-H. Lee, ${ }^{34}$ J. H. Lee, ${ }^{3}$ W. Leight, ${ }^{22}$ M. J. LeVine, ${ }^{3}$ C. Li, ${ }^{38} \mathrm{~N} . \mathrm{Li}^{51}{ }^{51}$ Y. Li, ${ }^{44}$ G. Lin, ${ }^{52}$ S. J. Lindenbaum, ${ }^{26}$ M. A. Lisa, ${ }^{28}$ F. Liu, ${ }^{51}$ J. Liu, ${ }^{36}$ L. Liu, ${ }^{51}$ T. Ljubicic, ${ }^{3}$ W. J. Llope, ${ }^{36}$ R. S. Longacre, ${ }^{3}$ W. A. Love, ${ }^{3}$ Y. Lu, ${ }^{38}$ T. Ludlam, ${ }^{3}$ G. L. Ma, ${ }^{40}$ Y. G. Ma, ${ }^{40}$ D. P. Mahapatra, ${ }^{13}$ R. Majka, ${ }^{52}$ O. I. Mall, ${ }^{5}$ L. K. Mangotra, ${ }^{17}$ R. Manweiler, ${ }^{46}$ S. Margetis,,${ }^{18}$ C. Markert,,${ }^{43}$ H. S. Matis, ${ }^{21}$ Yu. A. Matulenko, ${ }^{32}$ D. McDonald, ${ }^{36}$ T. S. McShane, ${ }^{9}$ A. Meschanin, ${ }^{32}$ R. Milner, ${ }^{22}$ N. G. Minaev, ${ }^{32}$ S. Mioduszewski, ${ }^{42}$ A. Mischke, ${ }^{27}$ B. Mohanty, ${ }^{47}$ D. A. Morozov, ${ }^{32}$ M. G. Munhoz, ${ }^{37}$ B. K. Nandi, ${ }^{14}$ C. Nattrass,,${ }^{52}$ T. K. Nayak, ${ }^{47}$ J. M. Nelson, ${ }^{2}$ P. K. Netrakanti, ${ }^{33}$ M. J. Ng, ${ }^{4}$ L. V. Nogach, ${ }^{32}$ S. B. Nurushev, ${ }^{32}$ G. Odyniec, ${ }^{21}$ A. Ogawa, ${ }^{3}$ H. Okada, ${ }^{3}$ V. Okorokov, ${ }^{25}$ D. Olson, ${ }^{21}$ M. Pachr, ${ }^{10}$ B. S. Page, ${ }^{15}$ S. K. Pal,,${ }^{47}$ Y. Pandit, ${ }^{18}$ Y. Panebratsev, ${ }^{11}$ T. Pawlak, ${ }^{48}$ T. Peitzmann,,${ }^{27}$ V. Perevoztchikov, ${ }^{3}$ C. Perkins, ${ }^{4}$ W. Peryt,,${ }^{48}$ S. C. Phatak, ${ }^{13}$ P. Pile, ${ }^{3}$ M. Planinic, ${ }^{53}$ J. Pluta, ${ }^{48}$ D. Plyku, ${ }^{29}$ N. Poljak, ${ }^{53}$ A. M. Poskanzer, ${ }^{21}$ B. V. K. S. Potukuchi,,${ }^{17}$ D. Prindle, ${ }^{49}$ C. Pruneau, ${ }^{50}$ N. K. Pruthi, ${ }^{30}$ P. R. Pujahari, ${ }^{14}$ J. Putschke, ${ }^{52}$ R. Raniwala, ${ }^{35}$ S. Raniwala, ${ }^{35}$ R. L. Ray, ${ }^{43}$ R. Redwine, ${ }^{22}$ R. Reed, ${ }^{5}$ A. Ridiger, ${ }^{25}$ H. G. Ritter, ${ }^{21}$ J. B. Roberts, ${ }^{36}$ O. V. Rogachevskiy, ${ }^{11}$ J. L. Romero, ${ }^{5}$ A. Rose, ${ }^{21}$ C. Roy, ${ }^{41}$ L. Ruan, ${ }^{3}$ M. J. Russcher, ${ }^{27}$ R. Sahoo, ${ }^{41}$ I. Sakrejda, ${ }^{21}$ T. Sakuma, ${ }^{22}$ S. Salur, ${ }^{21}$ J. Sandweiss, ${ }^{52}$ M. Sarsour, ${ }^{42}$ J. Schambach, ${ }^{43}$ R. P. Scharenberg, ${ }^{33}$ N. Schmitz, ${ }^{23}$ J. Seger, ${ }^{9}$
I. Selyuzhenkov, ${ }^{15}$ P. Seyboth, ${ }^{23}$ A. Shabetai, ${ }^{16}$ E. Shahaliev, ${ }^{11}$ M. Shao,,${ }^{38}$ M. Sharma, ${ }^{50}$ S. S. Shi, ${ }^{51}$ X-H. Shi, ${ }^{40}$ E. P. Sichtermann, ${ }^{21}$ F. Simon, ${ }^{23}$ R. N. Singaraju, ${ }^{47}$ M. J. Skoby, ${ }^{33}$ N. Smirnov, ${ }^{52}$ R. Snellings, ${ }^{27}$ P. Sorensen, ${ }^{3}$ J. Sowinski, ${ }^{15}$ H. M. Spinka, ${ }^{1}$ B. Srivastava, ${ }^{33}$ A. Stadnik, ${ }^{11}$ T. D. S. Stanislaus,,${ }^{46}$ D. Staszak, ${ }^{6}$ M. Strikhanov,,${ }^{25}$ B. Stringfellow, ${ }^{33}$ A. A. P. Suaide, ${ }^{37}$ M. C. Suarez, ${ }^{8}$ N. L. Subba, ${ }^{18}$ M. Sumbera, ${ }^{10}$ X. M. Sun, ${ }^{21}$ Y. Sun, ${ }^{38}$ Z. Sun, ${ }^{20}$ B. Surrow, ${ }^{22}$ T. J. M. Symons, ${ }^{21}$ A. Szanto de Toledo, ${ }^{37}$ J. Takahashi, ${ }^{7}$ A. H. Tang, ${ }^{3}$ Z. Tang, ${ }^{38}$ L. H. Tarini, ${ }^{50}$ T. Tarnowsky, ${ }^{24}$ D. Thein, ${ }^{43}$ J. H. Thomas,,${ }^{21}$ J. Tian, ${ }^{40}$ A. R. Timmins, ${ }^{50}$ S. Timoshenko, ${ }^{25}$ D. Tlusty, ${ }^{10}$ M. Tokarev, ${ }^{11}$ T. A. Trainor, ${ }^{49}$ V. N. Tram, ${ }^{21}$ A. L. Trattner, ${ }^{4}$ S. Trentalange, ${ }^{6}$ R. E. Tribble, ${ }^{42}$ O. D. Tsai, ${ }^{6}$ J. Ulery, ${ }^{33}$ T. Ullrich, ${ }^{3}$ D. G. Underwood, ${ }^{1}$ G. Van Buren, ${ }^{3}$ M. van Leeuwen, ${ }^{27}$ A. M. Vander Molen, ${ }^{24}$ J. A. Vanfossen, Jr., ${ }^{18}$ R. Varma, ${ }^{14}$ G. M. S. Vasconcelos, ${ }^{7}$ I. M. Vasilevski, ${ }^{12}$ A. N. Vasiliev, ${ }^{32}$ F. Videbaek, ${ }^{3}$ S. E. Vigdor, ${ }^{15}$ Y. P. Viyogi, ${ }^{13}$ S. Vokal, ${ }^{11}$ S. A. Voloshin, ${ }^{50}$ M. Wada, ${ }^{43}$ M. Walker, ${ }^{22}$ F. Wang, ${ }^{33}$ G. Wang, ${ }^{6}$ J. S. Wang, ${ }^{20}$ Q. Wang, ${ }^{33}$ X. Wang, ${ }^{44}$ X. L. Wang, ${ }^{38}$ Y. Wang, ${ }^{44}$
G. Webb, ${ }^{19}$ J. C. Webb, ${ }^{46}$ G. D. Westfall, ${ }^{24}$ C. Whitten Jr., ${ }^{6}$ H. Wieman, ${ }^{21}$ S. W. Wissink, ${ }^{15}$ R. Witt, ${ }^{45}$ Y. Wu, ${ }^{51}$ W. Xie, ${ }^{33}$ N. Xu, ${ }^{21}$ Q. H. Xu, ${ }^{39}$ Y. Xu, ${ }^{38}$ Z. Xu, ${ }^{3}$ Y. Yang, ${ }^{20}$ P. Yepes, ${ }^{36}$ K. Yip, ${ }^{3}$ I-K. Yoo, ${ }^{34}$ Q. Yue, ${ }^{44}$ M. Zawisza, ${ }^{48}$ H. Zbroszczyk, ${ }^{48}$ W. Zhan, ${ }^{20}$ S. Zhang, ${ }^{40}$ W. M. Zhang, ${ }^{18}$ X. P. Zhang, ${ }^{21}$ Y. Zhang, ${ }^{21}$ Z. P. Zhang, ${ }^{38}$ Y. Zhao, ${ }^{38}$ C. Zhong, ${ }^{40}$ J. Zhou, ${ }^{36}$ R. Zoulkarneev, ${ }^{12}$ Y. Zoulkarneeva, ${ }^{12}$ and J. X. Zuo ${ }^{40}$

(STAR Collaboration)

${ }^{1}$ Argonne National Laboratory, Argonne, Illinois 60439, USA
${ }^{2}$ University of Birmingham, Birmingham, United Kingdom
${ }^{3}$ Brookhaven National Laboratory, Upton, New York 11973, USA
${ }^{4}$ University of California, Berkeley, California 94720, USA
${ }^{5}$ University of California, Davis, California 95616, USA
${ }^{6}$ University of California, Los Angeles, California 90095, USA
${ }^{7}$ Universidade Estadual de Campinas, Sao Paulo, Brazil
${ }^{8}$ University of Illinois at Chicago, Chicago, Illinois 60607, USA
${ }^{9}$ Creighton University, Omaha, Nebraska 68178, USA
${ }^{10}$ Nuclear Physics Institute AS CR, 25068 Řež/Prague, Czech Republic
${ }^{11}$ Laboratory for High Energy (JINR), Dubna, Russia
${ }^{12}$ Particle Physics Laboratory (JINR), Dubna, Russia
${ }^{13}$ Institute of Physics, Bhubaneswar 751005, India
${ }^{14}$ Indian Institute of Technology, Mumbai, India
${ }^{15}$ Indiana University, Bloomington, Indiana 47408, USA
${ }^{16}$ Institut de Recherches Subatomiques, Strasbourg, France
${ }^{17}$ University of Jammu, Jammu 180001, India
${ }^{18}$ Kent State University, Kent, Ohio 44242, USA
${ }^{19}$ University of Kentucky, Lexington, Kentucky, 40506-0055, USA
${ }^{20}$ Institute of Modern Physics, Lanzhou, China
${ }^{21}$ Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
${ }^{22}$ Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
${ }^{23}$ Max-Planck-Institut für Physik, Munich, Germany
${ }^{24}$ Michigan State University, East Lansing, Michigan 48824, USA
${ }^{25}$ Moscow Engineering Physics Institute, Moscow Russia
${ }^{26}$ City College of New York, New York City, New York 10031, USA
${ }^{27}$ NIKHEF and Utrecht University, Amsterdam, The Netherlands
${ }^{28}$ Ohio State University, Columbus, Ohio 43210, USA
${ }^{29}$ Old Dominion University, Norfolk, VA, 23529, USA
${ }^{30}$ Panjab University, Chandigarh 160014, India
${ }^{31}$ Pennsylvania State University, University Park, Pennsylvania 16802, USA
${ }^{32}$ Institute of High Energy Physics, Protvino, Russia
${ }^{33}$ Purdue University, West Lafayette, Indiana 47907, USA
${ }^{34}$ Pusan National University, Pusan, Republic of Korea
${ }^{35}$ University of Rajasthan, Jaipur 302004, India
${ }^{36}$ Rice University, Houston, Texas 77251, USA
${ }^{37}$ Universidade de Sao Paulo, Sao Paulo, Brazil
${ }^{38}$ University of Science \& Technology of China, Hefei 230026, China
${ }^{39}$ Shandong University, Jinan, Shandong 250100, China
${ }^{40}$ Shanghai Institute of Applied Physics, Shanghai 201800, China
${ }^{41}$ SUBATECH, Nantes, France
${ }^{42}$ Texas A ξM University, College Station, Texas 77843, USA
${ }^{43}$ University of Texas, Austin, Texas 78712, USA
${ }^{44}$ Tsinghua University, Beijing 100084, China
${ }^{45}$ United States Naval Academy, Annapolis, MD 21402, USA
${ }^{46}$ Valparaiso University, Valparaiso, Indiana 46383, USA
${ }^{47}$ Variable Energy Cyclotron Centre, Kolkata 700064, India
${ }^{48}$ Warsaw University of Technology, Warsaw, Poland
${ }^{49}$ University of Washington, Seattle, Washington 98195, USA
${ }^{50}$ Wayne State University, Detroit, Michigan 48201, USA
${ }^{51}$ Institute of Particle Physics, CCNU (HZNU), Wuhan 430079, China
${ }^{52}$ Yale University, New Haven, Connecticut 06520, USA
${ }^{53}$ University of Zagreb, Zagreb, HR-10002, Croatia
(Dated: April 2, 2009)
The STAR collaboration at RHIC presents measurements of $J / \psi \rightarrow e^{+} e^{-}$at mid-rapidity and high transverse momentum ($p_{T}>5 \mathrm{GeV} / c$) in $p+p$ and central $\mathrm{Cu}+\mathrm{Cu}$ collisions at $\sqrt{s_{\mathrm{NN}}}=200 \mathrm{GeV}$.

Abstract

The inclusive J / ψ production cross section for $\mathrm{Cu}+\mathrm{Cu}$ collisions is found to be consistent at high p_{T} with the binary collision-scaled cross section for $p+p$ collisions, in contrast to previous measurements at lower p_{T}, where a suppression of J / ψ production is observed relative to the expectation from binary scaling. Azimuthal correlations of J / ψ with charged hadrons in $p+p$ collisions provide an estimate of the contribution of B-meson decays to J / ψ production of $13 \% \pm 5 \%$.

PACS numbers: $12.38 . \mathrm{Mh}, 14.40 . \mathrm{Gx}, 25.75 . \mathrm{Dw}, 25.75 . \mathrm{Nq}$

Suppression of the $c \bar{c}$ bound state J / ψ meson production in relativistic heavy-ion collisions arising from J / ψ dissociation due to screening of the $c \bar{c}$ binding potential in the deconfined medium has been proposed as a signature of Quark-Gluon Plasma (QGP) formation [1]. Measurements at $\sqrt{s_{\mathrm{NN}}}=17.3 \mathrm{GeV}$ at the CERN-SPS observed a strong suppression of J / ψ production in heavyion collisions [2], although the magnitude of the suppression decreases with increasing $J / \psi p_{T}$. This systematic dependence may be explained by initial state scattering (Cronin effect [3]), as well as the combined effects of finite J / ψ formation time and the finite space-time extent of the hot, dense volume where the dissociation can occur [4].

At higher beam energy ($\sqrt{s_{\mathrm{NN}}}=200 \mathrm{GeV}$), the PHENIX collaboration at RHIC has measured J / ψ suppression for $p_{T}<5 \mathrm{GeV} / c$ in central (small impact parameter) $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ collisions [5] that is similar in magnitude to that observed at the CERN-SPS. This similarity is surprising in light of the expectation that the energy density is significantly higher at larger collision energy. It may be due to the counterbalancing of larger dissociation with recombination of unassociated c and \bar{c} in the medium, which are more abundant at higher energy [6, 7, 8, 9, 10].

Measurements of open heavy-flavor production may also shed light on J / ψ suppression mechanisms. Nonphotonic electrons from the semi-leptonic decay of heavy flavor mesons are found to be strongly suppressed in heavy-ion relative to $\mathrm{p}+\mathrm{p}$ collisions at RHIC [11, 12], an effect that has been attributed to partonic energy loss in dense matter [13]. This process may also contribute to high- $p_{T} J / \psi$ suppression, if J / ψ formation proceeds through a channel carrying color.

The medium generated in RHIC heavy-ion collisions is thought to be strongly coupled [14], making accurate QCD calculations of quarkonium propagation difficult. The AdS/CFT duality for QCD-like theories may provide insight into heavy fermion pair propagation in a strongly coupled liquid. One such calculation predicts that the dissociation temperature decreases with increasing $J / \psi p_{T}$ (or velocity) 15]. The temperature achieved at RHIC $\left(\sim 1.5 \mathrm{~T}_{c}\right)$ [14] is below this dissociation temperature at low $J / \psi p_{T}$, and above it at $p_{T} \gtrsim 5 \mathrm{GeV} / c$. Consequently, J / ψ production is predicted to be more suppressed at high p_{T}, in contrast to the standard suppression mechanism. This prediction can be tested with measurements of J / ψ over a broad kinematic range, in
both $p+p$ and nuclear collisions.
The interpretation of J / ψ suppression observed at the SPS and by the PHENIX collaboration requires understanding of the quarkonium production mechanism in hadronic collisions, which include direct production via gluon fusion and color-octet (CO) and color-singlet (CS) transitions, as described by Non-Relativistic Quantum ChromoDynamics (NRQCD) 16]; parton fragmentation; and feeddown from higher charmonium states $\left(\chi_{c}\right.$, $\psi(2 S))$ and B meson decays. No model at present fully explains the J / ψ systematics observed in elementary collisions [17]. J / ψ measurements at high $-p_{T}$ both in $p+p$ and nuclear collisions may provide additional insights into the basic processes underlying quarkonium production.

This letter reports new measurements by the STAR collaboration at RHIC of J / ψ production at high transverse momentum in $p+p$ and $\mathrm{Cu}+\mathrm{Cu}$ collisions at $\sqrt{s_{\mathrm{NN}}}$ $=200 \mathrm{GeV}$ [18]. The inclusive cross section and semiinclusive J / ψ-hadron correlations are presented.

The $\mathrm{Cu}+\mathrm{Cu}$ data are from the RHIC 2005 run, while the $p+p$ data are from 2005 and 2006. The online trigger, utilizing the STAR Barrel Electromagnetic Calorimeter (BEMC) [19] as well as other trigger detectors, required one BEMC tower with an energy deposition above a given threshold in coincidence with a minimum bias (MB) collision trigger [20]. The online trigger threshold, MB trigger condition, and sampled integrated luminosity for each dataset are listed in Tab. [] In $\mathrm{Cu}+\mathrm{Cu}$ data, the most central $0-20 \%$ and $0-60 \%$ of the total hadronic cross section were selected as in 20, 21].

In this analysis, $J / \psi \rightarrow e^{+} e^{-}$(Branching Ratio $(B)=5.9 \%$) was reconstructed using the STAR Time Projection Chamber (TPC) 22] and BEMC, with acceptance $|\eta|<1$ and full azimuthal coverage. Hadron rejection was achieved through the combination of BEMC shower energy, shower shape measured in the embedded ShowerMaximum Detector (SMD), and ionization loss $(d E / d x)$ in the TPC [11, 23]. Electron purity is $>70 \%$ with high efficiency. At moderate p_{T}, the TPC alone can measure electrons with efficiency $>90 \%$ and sufficient hadron rejection $\left(\sim 10^{3}\right)$ 11, 24].

Figure 1 shows di-electron invariant mass distributions for (a) $p+p$ and (b) $\mathrm{Cu}+\mathrm{Cu}$ collisions at $\sqrt{s_{\mathrm{NN}}}=200$ GeV . The like-sign distribution measures random pair background from Dalitz decays and photon conversions. The J / ψ mass window is $2.7<M_{i n v}^{e e}<3.2 \mathrm{GeV} / c^{2}$. Other correlated $e^{+} e^{-}$background is estimated to be $<$

TABLE I: Trigger conditions, off-line cuts and J / ψ signal statistics. E_{T} is the BEMC trigger threshold. $p_{T 1}$ and $p_{T 2}$ are the lower bounds for the two electron candidates. BBC (ZDC) means the coincidence of Beam Beam Counters (Zero Degree Calorimeters). S/B is the ratio of signal to background.

	$p+p(2005)$	$p+p(2006)$	$\mathrm{Cu}+\mathrm{Cu}$
MB trigger	BBC	BBC	ZDC
$E_{T}(\mathrm{GeV})$	>3.5	>5.4	>3.75
Sampled int. lumi	$2.8 p b^{-1}$	$11.3{p b^{-1}}^{2} 860 \mu b^{-1}$	
$p_{T 1}(\mathrm{GeV} / c)$	>2.5	>4.0	>3.5
$p_{T 2}(\mathrm{GeV} / c)$	>1.2	>1.2	>1.5
$J / \psi p_{T}(\mathrm{GeV} / \mathrm{c})$	$5-8$	$5-14$	$5-8$
J / ψ counts	32 ± 6	51 ± 10	23 ± 8
S/B	$9: 1$	$2: 1$	$1: 4$

FIG. 1: (Color online.) Left: invariant dielectron mass distribution in (a) $p+p$ and (b) $\mathrm{Cu}+\mathrm{Cu}$ collisions, for opposite sign (solid red) and same sign pairs (grey band) from data, and simulated J / ψ peak for $p+p$ (dashed). Right: $J / \psi p_{T}$ distributions in $p+p$ and $\mathrm{Cu}+\mathrm{Cu}$ collisions at $\sqrt{s_{\mathrm{NN}}}=200 \mathrm{GeV}$. Horizontal brackets show bin limits. Also shown are perturbative calculations for LO CS+CO (solid line) and NNLO* CS (band) direct yields, without feeddown contributions.
10% [25, 26, 27]. Table I lists the offline cuts and J / ψ signal statistics. Different thresholds were used for the two electron candidates, corresponding to different online trigger thresholds.

The J / ψ detection efficiency was calculated by two complementary methods. The first method was to determine the electron trigger efficiency by comparing triggered electron yield to the measured inclusive electron spectrum [11]. The non-triggered electron efficiency depends only on the TPC tracking efficiency, which was determined by embedding simulated electron tracks into real events [20], and $d E / d x$ efficiencies, determined from the distributions in real data [23]. The second method was to simulate J / ψ events in PYTHIA 28], embed them into real events, and reconstruct the hybrid event to determine the J / ψ trigger and detection efficiencies. The

FIG. 2: x_{T} distributions of pions and protons 33, 34, 35, 36, 37] and $J / \psi(\mathrm{CDF}$ [26, 27], UA1 38], PHENIX 25], and ISR [39]).
difference in estimated efficiency between the two methods is $<10 \%$ for all datasets and is included into the systematic uncertainties of the inclusive spectra. This systematic uncertainty is correlated in $p+p$ and $\mathrm{Cu}+\mathrm{Cu}$. A log-likelihood method is used to correct the J / ψ efficiency and calculate the yields 29].

Figure 1 (c) shows the measured $J / \psi \rightarrow e^{+} e^{-} p_{T}$ spectra. The systematic uncertainties are dominated by kinematic cuts, trigger efficiency (9%) and reconstruction efficiency (8\%), and are similar and correlated in $p+p$ and $\mathrm{Cu}+\mathrm{Cu}$. The normalization uncertainty for the inclusive non-singly diffractive $p+p$ cross section is 14% [30]. Theoretical calculations shown in the figure are NRQCD from CO and CS transitions for direct J / ψ 's in $p+p$ collisions 31] (solid line) and NNLO^ CS result 32] (gray band). Neither calculation includes feeddown contributions. The band for NNLO^{\star} gives the uncertainty due to scale parameters and the charm quark mass. The CS +CO calculation describes the data well and leaves little room for feeddown from ψ^{\prime}, χ_{c} and B, estimated to be a factor of ~ 1.5. NNLO* CS predicts a steeper p_{T} dependence.

Proton and pion inclusive production cross sections in high energy $p+p$ collisions have been found to follow x_{T} scaling [40, 41, 42]: $E \frac{d^{3} \sigma}{d p^{3}}=g\left(x_{T}\right) / s^{n / 2}$, where $x_{T}=2 p_{T} / \sqrt{s}$. In the parton model, n reflects the number of constituents taking an active role in hadron production. Figure 2 shows the x_{T} distributions of this data and previous J / ψ, pion and proton data, from $p+p$ collisions. The J / ψ data [25, 26, 27, 38, 39] cover the range $\sqrt{s}=30 \mathrm{GeV}$ to $\sqrt{s}=1.96 \mathrm{TeV}$. The J / ψ exhibits x_{T} scaling ($n=5.6 \pm 0.2$) at high p_{T}, similar to the trend for pions and protons $(n=6.6 \pm 0.1)$ 34, 35]. While low $p_{T} J / \psi$ production originates in a hard process due to the mass scale, subsequent soft processes could cause violation of x_{T} scaling. At high p_{T}, the power parameter $n=5.6 \pm 0.2$ is closer to the predictions from CO

FIG. 3: (Color online). $J / \psi R_{A A}$ vs. p_{T}. STAR data points have statistical (bars) and systematic (caps) uncertainties. The box about unity on the left shows $R_{A A}$ normalization uncertainty, which is the quadrature sum of $p+p$ normalization and binary collision scaling uncertainties. The solid line and band show the average and uncertainty of the two 0-20\% data points. The curves are model calculations described in the text. The uncertainty band of 10% for the dotted curve is not shown.
and Color-Evaporation production $(n \simeq 6)$ 31, 43] and much smaller than that from next-to-next-to leading order (NNLO*) CS production $(n \simeq 8)$ [32]. This is also evident from Fig. 1 (c).

The nuclear modification factor $R_{A A}\left(p_{T}\right)$ [44], defined as the ratio of the inclusive hadron yield in nuclear collisions to that in $p+p$ collisions scaled by the underlying number of binary nucleon-nucleon collisions, measures medium-induced effects on inclusive particle production. In the absence of such effects, $R_{A A}$ is unity for hard processes.

Figure 3 shows $R_{A A}$ for J / ψ vs p_{T}, in $0-20 \% \mathrm{Cu}+\mathrm{Cu}$ collisions from PHENIX 45] and STAR, and 0-60\% $\mathrm{Cu}+\mathrm{Cu}$ from STAR. $\mathrm{Cu}+\mathrm{Cu}$ and $p+p$ data with $p_{T}>$ $5 \mathrm{GeV} / c$ are from STAR. The $R_{A A}$ systematic uncertainty takes into account the correlated efficiencies of the $\mathrm{Cu}+\mathrm{Cu}$ and $p+p$ datasets. $R_{A A}$ for J / ψ is seen to increase with increasing p_{T}. The average of the two STAR $0-20 \%$ data points at high- p_{T} is $R_{A A}=1.4 \pm 0.4$ (stat.) \pm 0.2 (syst.). Utilizing the STAR $\mathrm{Cu}+\mathrm{Cu}$ and $p+p$ data reported here and PHENIX $\mathrm{Cu}+\mathrm{Cu}$ data at high- p_{T} [45] gives $R_{A A}=1.1 \pm 0.3$ (stat.) ± 0.2 (syst.) for $p_{T}>5$ GeV / c. Both results are consistent with unity and differ by two standard deviations from a PHENIX measurement at lower $p_{T}\left(R_{A A}=0.52 \pm 0.05\right.$ [45] $)$. A notable conclusion from these data is that J / ψ is the only hadron measured in RHIC heavy-ion collisions that does not exhibit significant high p_{T} suppression. However, for the J / ψ population reported here, the initial scattered partons have average momentum fraction ~ 0.1 (see also Fig. 2), where initial state effects such as anti-shadowing may lead to increasing $R_{A A}$ with increasing p_{T}.

The dashed curve in Fig. 3 shows the prediction of

FIG. 4: (Color online). J / ψ-hadron azimuthal correlations. Lines show PYTHIA calculation of prompt (dashed) and B meson (dot-dashed) feeddown contributions, and their sum (solid).
an AdS/CFT-based calculation, in which the J / ψ is embedded in a hydrodynamic model [46] and the J / ψ dissociation temperature decreases with increasing velocity according to [15]. Its p_{T} dependence is at variance with that of the data. The dotted line shows the prediction of a two-component model including color screening, hadronic phase dissociation, statistical $c \bar{c}$ coalescence at the hadronization transition, J / ψ formation time effects, and B-meson feeddown [3]. This calculation describes the overall trend of the data.

The other calculations in Fig. 3 provide a comparison to open charm $R_{A A}$. The solid line is based on the WHDG model for charm quark energy loss, with assumed medium gluon density $d N_{g} / d y=254$ for $0-20 \% \mathrm{Cu}+\mathrm{Cu}$ 47]. The dash-dotted line shows a GLV model calculation for D-meson energy loss, with $d N_{g} / d y=275$ [48]. Both models, which correctly describe heavy-flavor suppression in $\mathrm{Au}+\mathrm{Au}$ collisions, predict charm meson suppression of a factor ~ 2 at $p_{T}>5 \mathrm{GeV} / c$. This is in contrast to the $J / \psi R_{A A}$. This comparison suggests that high- $p_{T} J / \psi$ production does not proceed dominantly via a channel carrying color. However, other effects [3, 49] may compensate for the predicted loss in this p_{T} range.

Figure 4 shows the azimuthal correlation between high$p_{T} J / \psi\left(p_{T}>5 \mathrm{GeV} / c\right)$ and charged hadrons with $p_{T}>0.5 \mathrm{GeV} / c$ in $200 \mathrm{GeV} \mathrm{p}+\mathrm{p}$ collisions. The J / ψ mass window is narrowed to $2.9-3.2 \mathrm{GeV} / c^{2}$ to increase the S / B ratio. There is no significant correlated yield in the near-side $(\Delta \phi \sim 0)$, in contrast to dihadron correlation measurements 50]. The lines show the result of a PYTHIA calculation 28], which exhibits a near-side correlation due dominantly to $B \rightarrow J / \psi+X$. A χ^{2} fit to the data of the summed distribution (directly produced J / ψ, feeddown from $\chi_{c}, \psi(2 S)$ and B-meson) gives a contribution from B-meson feeddown to inclusive J / ψ production of $13 \% \pm 5 \%$ at $p_{T}>5 \mathrm{GeV} / c$.

In summary, we report new measurements of J / ψ pro-
duction in $\sqrt{s}=200 \mathrm{GeV} p+p$ and $\mathrm{Cu}+\mathrm{Cu}$ collisions at high $p_{T}\left(p_{T}>5 \mathrm{GeV} / c\right)$ at RHIC. The J / ψ inclusive cross section was found to obey x_{T} scaling for p_{T} $\gtrsim 5 \mathrm{GeV} / \mathrm{c}$, in contrast to lower $p_{T} J / \psi$ production. The J / ψ nuclear modification factor $R_{A A}$ in $\mathrm{Cu}+\mathrm{Cu}$ increases from low to high p_{T} and is consistent with no J / ψ suppression for $p_{T}>5 \mathrm{GeV} / \mathrm{c}$, in contrast to the prediction from a theoretical model of quarkonium dissociation in a strongly coupled liquid using an AdS/CFT approach. The two-component model with finite J / ψ formation time describes the increasing trend of the J / ψ $R_{A A}$. Based on the measurement of azimuthal correlations and the comparison to model calculations, we estimate the fraction of J / ψ from B-meson decay to be $13 \pm 5 \%$ at $p_{T}>5 \mathrm{GeV} / c$.

The authors thank G.C. Nayak, J.P. Lansberg, W.A. Horowitz and I. Vitev for providing calculations and discussion. We thank the RHIC Operations Group and RCF at BNL, and the NERSC Center at LBNL and the resources provided by the Open Science Grid consortium for their support. This work was supported in part by the Offices of NP and HEP within the U.S. DOE Office of Science, the U.S. NSF, the Sloan Foundation, the DFG Excellence Cluster EXC153 of Germany, CNRS/IN2P3, RA, RPL, and EMN of France, STFC and EPSRC of the United Kingdom, FAPESP of Brazil, the Russian Ministry of Sci. and Tech., the NNSFC, CAS, MoST, and MoE of China, IRP and GA of the Czech Republic, FOM of the Netherlands, DAE, DST, and CSIR of the Government of India, the Polish State Committee for Scientific Research, and the Korea Sci. \& Eng. Foundation.
[1] T. Matsui and H. Satz, Phys. Lett. B178, 416 (1986).
[2] M. C. Abreu et al., Phys. Lett. B499, 85 (2001).
[3] X. Zhao and R. Rapp (2007), arXiv:0712.2407.
[4] F. Karsch and R. Petronzio, Phys. Lett. B212, 255 (1988).
[5] A. Adare et al., Phys. Rev. Lett. 98, 232301 (2007).
[6] P. Braun-Munzinger and J. Stachel, Phys. Lett. B490, 196 (2000).
[7] L. Grandchamp and R. Rapp, Phys. Lett. B523, 60 (2001).
[8] M. I. Gorenstein et al., Phys. Lett. B524, 265 (2002).
[9] R. L. Thews, M. Schroedter, and J. Rafelski, Phys. Rev. C63, 054905 (2001).
[10] A. D. Frawley, T. Ullrich, and R. Vogt, Phys. Rept. 462,

125 (2008).
[11] B. I. Abelev et al., Phys. Rev. Lett. 98, 192301 (2007).
[12] A. Adare et al., Phys. Rev. Lett. 98, 172301 (2007).
[13] Y. L. Dokshitzer and D. E. Kharzeev, Phys. Lett. B519, 199 (2001).
[14] J. Adams et al., Nucl. Phys. A757, 102 (2005).
[15] H. Liu, K. Rajagopal, and U.A.Wiedemann, Phys. Rev. Lett. 98, 182301 (2007).
[16] G. T. Bodwin, E. Braaten, and G. P. Lepage, Phys. Rev. D51, 1125 (1995), hep-ph/9407339.
[17] N. Brambilla et al. (2004), hep-ph/0412158.
[18] K. H. Ackermann et al., Nucl. Instrum Meth. A499, 624 (2003).
[19] M. Beddo et al., Nucl. Instrum. Meth. A499, 725 (2003).
[20] B. I. Abelev et al. (2008), arXiv:0808.2041.
[21] B. I. Abelev et al. (2008), arXiv:0810.4979.
[22] M. Anderson et al., Nucl. Instrum. Meth. A499, 659 (2003).
[23] Y.-C. Xu et al. (2008), arXiv:0807.4303.
[24] J. Adams et al., Phys. Rev. Lett. 94, 062301 (2005).
[25] A. Adare et al., Phys. Rev. Lett. 98, 232002 (2007).
[26] F. Abe et al., Phys. Rev. Lett. 79, 572 (1997).
[27] D. E. Acosta et al., Phys. Rev. D71, 032001 (2005).
[28] T. Sjostrand, S. Mrenna, and P. Skands, JHEP 05, 026 (2006).
[29] Z. Tang, Ph.D. thesis, University of Science and Technology and China (2009).
[30] J. Adams et al., Phys. Rev. Lett. 91, 172302 (2003).
[31] G. C. Nayak, M. X. Liu, and F. Cooper, Phys. Rev. D68, 034003 (2003), and private communication.
[32] P. Artoisenet et al., Phys. Rev. Lett. 101, 152001 (2008), and J.P. Lansberg private communication.
[33] M. Banner et al., Phys. Lett. B115, 59 (1982).
[34] J. Adams et al., Phys. Lett. B637, 161 (2006).
[35] J. Adams et al., Phys. Lett. B616, 8 (2005).
[36] B. Alper et al., Nucl. Phys. B100, 237 (1975).
[37] D. Antreasyan et al., Phys. Rev. D19, 764 (1979).
[38] C. Albajar et al., Phys. Lett. B256, 112 (1991).
[39] C. Kourkoumelis et al., Phys. Lett. B91, 481 (1980).
[40] A. G. Clark et al., Phys. Lett. B74, 267 (1978).
[41] A. L. S. Angelis et al., Phys. Lett. B79, 505 (1978).
[42] S. S. Adler et al., Phys. Rev. C69, 034910 (2004).
[43] M. Bedjidian et al. (2004), and R. Vogt private communication.
[44] C. Adler et al., Phys. Rev. Lett. 89, 202301 (2002).
[45] A. Adare et al., Phys. Rev. Lett. 101, 122301 (2008).
[46] T. Gunji, J. Phys.G: Nucl. Part. Phys. 35, 104137 (2008).
[47] S. Wicks et al., Nucl. Phys. A784, 426 (2007), and W. A. Horowitz private communication.
[48] A. Adil and I. Vitev, Phys. Lett. B649, 139 (2007), and I. Vitev private communication.
[49] X.-M. Xu, Nucl. Phys. A697, 825 (2002).
[50] J. Adams et al., Phys. Rev. Lett. 95, 152301 (2005).

