The Muon Telescope Detector

W.J. Llope, Rice University

Outline:

- A (brief) physics introduction
- Prototype systems
- Mechanical aspects of final detectors
- Final detectors in Run-11
- Full System design & installation
- Run-12 installation and early results
- Project timeline

Wikipedia: “Muons were discovered by Carl D. Anderson & Seth Neddermeyer at Caltech in 1936”

“Who ordered that?!?” – I.I. Rabi in 1937

Actually seems to have been first observed in a cloud chamber in Rostock Germany in 1933!

"The other double trace of the same type (figure 5) shows closely together the thin trace of an electron of 37 MeV, and a much more strongly ionizing positive particle with a much larger bending radius. The nature of this particle is unknown: for a proton it does not ionize enough and for a positive electron the ionization is too strong. The present double trace is probably a segment from a "shower" of particles as they have been observed by Blackett and Oechialini, i.e. the result of a nuclear explosion.

Kunze, P., Z. Phys. 83, (1933) 1
STAR-MTD “Basic Idea”

With a large area muon detector at mid-rapidity…

Physics:
• di-muon pairs from QGP thermal radiation, quarkonia, light vector mesons, resonances in QGP, and Drell-Yan production
 excellent mass resolution would separate different upsilon states
• single muons from the semi-leptonic decays of heavy flavor hadrons… e+muon correlation to distinguish heavy flavor production from initial lepton pair production
• advantages over electrons:
 • no γ conversion
 • much less Dalitz decay contribution
 • less affected by radiative losses in the detector materials

How could this be achieved?
• Hadron shielding is magnet backlegs and BEMC ($\sim 7X_0$)
• Precise timing! start from upVPD, fast TOF hit + fast MTD hit, TPC + HFT matching
• Low-level trigger capability for low to high p_T J/ψ in central Au+Au collisions
Conceptual Design of the STAR-MTD

Multi-gap Resistive Plate Chamber (MRPC):
- gas detector, avalanche mode
- Inexpensive, easy to build, but precise timing

The detectors cover the steel magnet backlegs and leave the ϕ-gaps uncovered.
Acceptance: $\sim 45\%$ at $|\eta|<0.5$

118 modules, 1416 readout strips, 2832 channels

Proven detector technologies
- MRPC detectors & STAR-TOF electronics
High Mass Di-muon Capabilities

2. With HFT, study $B \rightarrow J/\psi + X$; $J/\psi \rightarrow \mu \mu$
 using displaced vertices
3. Excellent mass resolution: separate different upsilon states

Heavy flavor collectivity and color screening, quarkonia production mechanisms:
J/ψ R_{AA} and v_2; upsilon R_{AA} ...

<table>
<thead>
<tr>
<th>Quarkonium dissociation temperatures - Digal, Karsch, Satz</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
</tr>
<tr>
<td>T_d/T_c</td>
</tr>
</tbody>
</table>

10/29/2011
DNP 2011, East Lansing, Lijuan Ruan (BNL)
Distinguish Heavy Flavor and Initial Lepton Pair Production: e-mu Correlation

\[\mu \] correlation simulation with Muon Telescope Detector at STAR from \(cc \bar{c} \):

- \(S/B=2 \) (\(M_{\mu \mu}>3 \text{ GeV/c}^2 \) and \(p_T(\mu\mu)<2 \text{ GeV/c} \))
- \(S/B=8 \) with electron pairing and tof association
The Details for the R&D Modules

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Modules and readout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cosmic ray and Fermi-lab T963 beam tests</td>
<td>double stacks, module size: 87(z)×17(φ) cm², Performance: 60 ps, ~0.6 cm at HV ± 6.3 kV</td>
</tr>
<tr>
<td>Run 7: Au+Au Run 8: p+p, d+Au</td>
<td>double stacks, 2 modules in a tray, module size: 87(z)×17(φ) cm², Readout: trigger electronics, Time resolution: 300 ps</td>
</tr>
<tr>
<td>Run 9: p+p Run 10: Au+Au, cosmic ray</td>
<td>double stacks, 3 modules in a tray, module size: 87(z)×17(φ) cm², Readout: TOF electronics; trigger electronics for trigger purpose.</td>
</tr>
<tr>
<td>Run 11</td>
<td>single stack, 1 module in a tray, module size: 87(z)×52(φ) cm², Readout: TOF electronics; trigger electronics for trigger purpose, Cosmic ray test performance: <100 ps</td>
</tr>
</tbody>
</table>

R&D from 2007 to 2011 led to a final design.
Run 10 Performance: Time and Spatial Resolution

Cosmic ray trigger
Total resolution: 109 ps
Start resolution (2 TOF hits): 46 ps
Multiple scattering: 25 ps
MTD intrinsic resolution: 96 ps
System spatial resolution: 2.5 cm, dominated by multiple scattering

10-gap module
σ: 109 ps
pure muons
average p_T: ~6 GeV/c

10-gap module
σ: 2.5 cm
Mechanical Design, Fabrication, and Installation

<table>
<thead>
<tr>
<th>System</th>
<th>MRPCs</th>
<th>“Tray” Design</th>
<th>Electronics</th>
<th>Installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAR TOF</td>
<td>excellent</td>
<td>complicated</td>
<td>new & complicated</td>
<td>simple</td>
</tr>
<tr>
<td>STAR MTD</td>
<td>excellent</td>
<td>simple</td>
<td>commodity</td>
<td>complicated</td>
</tr>
</tbody>
</table>

Outline:
- MTD “tray” mechanical design
- MTD11 prototype assembly
- MTD11 testing
- MTD9 and MTD11 in STAR
- Run-12 installation
- Full System design and installation

“MTD9” is the older run-9/10 prototype
“MTD11” are new prototypes for run-11
The MTD11 tray design is “final” for the full system
Muon Telescope Detector

MTD11 Tray Design (Top View)

inner glass stack = “active area”

MRPC “footprint”
The three MTD11 Trays mount directly onto BEMC PMT boxes
The Trays overlap so that the MRPC active regions meet end-to-end in “Z”

lower row of trays bolt to unistrut on the BEMC PMT boxes
upper row of trays bolt to the lower row of trays
this won’t work for the full system – more on this later in this talk…
Tray “top” (holds electronics) is complicated… Fabricated at Oaks Precision in Houston Delivered to UT-Austin in the back seat of my car

Top and frame (upside down)
- frame
- underside of top
- upper spacer
- “big hole” (covered by MFTB)

Top tack-welded to (welded) frame, sealed with DC730 freon-resistant sealant bottom bolts to frame in countersunk holes, also sealed with DC730
MRPCs inside the tray…

bottom of MRPC is flush with the bottom of the tray

correct upper spacer thickness is thus important!

side spacers hold MRPC laterally w.r.t. the frame…

HV wiring connected to bulkhead connector
UT will make the signal pigtails and ship them to China/India...
Muon Telescope Detector

MTD11 Tray Assembly
Untriggered cosmics
freon-only
6×250μm gaps: HV = ±7300V
5×250μm gaps: HV = ±6300V
Read-out via full chain of final electronics

⇒ reasonable noise rates…
 (strip area = 331 cm², so <0.5 Hz/cm²)
⇒ no dead channels…
MTD9 & MTD THUB

Three MTD11 trays (craned into place)

From East side looking West
Run 11 Online hit patterns (untriggered) and HV information

online hit patterns look reasonable
(3 MTD11 trays \times 2 strip ends \times 2 signal edges)

low rate per 1M events because
- this is p+p... ($\sqrt{s_{NN}} = 500$ GeV)
- MTD11 trigger available late in the run
data analysis still underway

HV monitoring
line 1: 6\times250 μm gap MTD11 trays, ±7200V
line 2: 5\times250 μm gap MTD11 tray+MTD9, ±6200V
Muon Telescope Detector

Geometry of the Full System

15 “5-packs” over the top
2 “5-packs” just under equator
11 “3-packs” below

…118 MTD trays total
…N/S & E/W symmetric

implemented in STAR geant simulations framework

http://www.star.bnl.gov/cgi-bin/protected/cvsweb.cgi/pams/geometry/mutdgeo/mutdgeo4.g?rev=1.2

also see http://wjillope.rice.edu/~MTD/MTDintegration.pdf
The mounting scheme for the MTD full system trays is actually a difficult problem!

MTD trays must mount on top of BEMC PMT boxes…

access to these some number of these boxes is needed during every shutdown to repair BEMC channels
typically this work is done by laying down on neighboring PMT boxes
this implies that 2-3 backlegs of MTD trays would need to be removed to access a single BEMC box!

Scheme used in Run-11 worked, and was the simplest possible for us,
but it would be a nightmare for a full system…

tray positioning is a little too sloppy because of imprecise positioning of unistrut nuts
difficult to install the upper layer of trays onto lower layer of trays…
too much work for STSG (Bob Soja and his expert technicians) to remove/reinstall MTD trays
too much cabling (dis)connecting & stresses on MTD modules – increased failures & gas leaks?

There is another problem too - how do we get access to a random tray on top of STAR?

one cannot simply walk on the MTD layer like one can walk on the PMT boxes
how do we replace a cable or sniff for gas leaks on a random tray when everything is installed?!?

And yet another problem are obstructions hanging from the boxes below STAR…

This is clearly going to be the hardest part of the total system design….
Muon Telescope Detector

Full System Installation Scheme

above STAR

BEMC PMT boxes

below STAR

BEMC crates
Two PMT boxes per backleg
one “2 pack” on each PMT box
5th MTD tray joins two “2 packs”
Muon Telescope Detector

Full System Installation Scheme (Above STAR case)

movie:
Three backlegs installed by STSG

Now fully cabled up... Tested through STAR DAQ...

gas leaks found and fixed... HV & LV systems ready...
oise data taken...

connected to L0 trigger will develop VPD+MTD triggers throughout Run-12
First Noise Rates & ToT distributions from Run-12 trays

channels are numbered TOF-style…
gas quality is still improving…

No bad channels
Noise rates averages very reasonable
(<1 Hz/cm²)

Time-over-Threshold plots
big avalanche peak
low streamer percentage
MTD Schedule

<table>
<thead>
<tr>
<th></th>
<th>Q4 (FY09)</th>
<th>Q1-2 (FY10)</th>
<th>Q3-4 (FY10)</th>
<th>Q1-2 (FY11)</th>
<th>Q3-4 (FY11)</th>
<th>Q1-2 (FY12)</th>
<th>Q3-4 (FY12)</th>
<th>Q1-2 (FY13)</th>
<th>Q3-4 (FY13)</th>
<th>Q1 (FY14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRPC Module</td>
<td></td>
<td></td>
<td></td>
<td>Design</td>
<td></td>
<td>Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposal Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US MTD Constru.</td>
<td></td>
</tr>
<tr>
<td>Electronics</td>
<td></td>
</tr>
<tr>
<td>Tray</td>
<td></td>
</tr>
<tr>
<td>Install/Commissio</td>
<td></td>
<td></td>
<td></td>
<td>Design</td>
<td></td>
<td>Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics Data</td>
<td></td>
</tr>
</tbody>
</table>

10% installation for Run12, 43% for Run13, 80% for Run 14.
Finish the project by Mar, 2014

MTD institutions: Brookhaven National Laboratory, University of California, Berkeley, University of California-Davis, Rice University, University of Science & Technology of China, Texas A&M University, University of Texas-Austin, Tsinghua University, Variable Energy Cyclotron Centre

US institutions: the electronics, the assembly of the trays and the operation of the detector

Chinese and Indian institutions: the fabrication of the MRPC modules

10/29/2011 | DNP 2011, East Lansing, Lijuan Ruan (BNL) | 27
Muon Telescope Detector

Summary and Conclusions

MTD will advance our knowledge of the Quark Gluon Plasma…

- low-level trigger capability for low to high p_T J/ψ in central Au+Au collisions
- excellent mass resolution separate different upsilon states
- e+muon correlation distinguish heavy flavor production from initial lepton pair production
- complementary to dielectrons different background contributions
- rare decay and exotics …

All MTD prototypes and final tray installations have been successful so far…

Fabricated trays and MRPCs fit together nicely, Bench test results look very good.
Hit patterns and noise rates in STAR are reasonable.
“Final” detectors installed on-time for Runs 11 and 12.
Collected untriggered data throughout Run-11, some triggered data at the end.
Looking forward to resolution results & add’l development of timing triggers

Successful Run-12 installation (13 trays) using new mounting scheme.
The critical issues in terms of system design involve optimizing some installation details..
~40% coverage for next run, remaining MTD detectors installed before Run-15.

धन्यवाद।
| Muon Telescope Detector |

backup
1. muon efficiency at |\eta|<0.5: 36%, pion efficiency: 0.5-1% at p_T>2 GeV/c
2. muon-to-pion enhancement factor: 50-100
3. muon-to-hadron enhancement factor: 100-1000 including track matching, tof and dE/dx
4. dimuon trigger enhancement factor from online trigger: 40-200 in central Au+Au collisions
Assumed MRPC Dimensions for MTD11 Prototypes

USTC Prototype
- Outer (PCB) 58.0 cm x 91.5 cm
- Active (Pads) 52.2 cm x 87.0 cm
- Height = 3 cm
- Weight = 13 kg (29 lbs)

Tsinghua MRPCs were 93 cm long… Prefer 91.5 cm
new approach: Make mounting more complicated to make integration easier…
unistrut mounts to two layers of “cross-pieces”
use available space between backlegs
install “diamond plate” covers over the top (heat retension?)

(J. Scheblein & WJL)
Under STAR…
not a lot of room down there
not enough slack in BEMC cabling
to move these crates

only viable option known is to
“widen the hangars”

Other items:
fittings and fixtures should be plug and play (limit # of small nuts/bolts)
allow for “foam” filler pieces between PMT boxes
locate local tray testing and storage area
locate space and define fixtures for 2-pack assembly in the AB/WAH