Light Nucleus Production in p+p and the BES

W.J. Llope Rice University

Outline:

Quick overview of major directions of this analysis

Fragment spectra in p+p collisions

B₂ and source radii (first measurement at RHIC)

UE vs in-Jet differences, & dependence on Jet Energy (first measurement anywhere)

Fragment production in BES

antinucleus production cross-sections and B₂ at low root-s (first measurement anywhere) source radii from B₂ vs P_T & $\sqrt{s_{NN}}$ (some RHIC results at high- $\sqrt{s_{NN}}$, but not at BES/SPS energies) direct comparison to HBT (existing results from SPS, but not RHIC)

(anti)baryon density vs $\sqrt{s_{NN}}$ (significant extension in P_T using TOF, and in $\sqrt{s_{NN}}$ in BES data)

Direct comparison to models (urqmd 2.3/3.3p1, AMPT, Pythia)

millions of events (from SUG@R & davinci) + coalescence

Major effort recently has been on all the corrections

Absorption

Feeddown

Reconstruction Efficiency

TOF Matching

PID Efficiency

...an astoundingly rich data set from an awesome detector!

Datasets Analyzed with the same code: 11 = p + p62GeV run-6 no TOF 12 = d + Au. 200GeV run-8 no TOF 13 = p + p200 GeV run-8 no TOF 14 = p + p500 GeV run-9 partial TOF 15 = p + p200 GeV run-9 partial TOF $16 = Au + Au \quad 200 \text{ GeV}$ run-10 full TOF 17 = Au + Au = 62.4 GeVrun-10 full TOF 18 = Au + Au 39 GeV run-10 full TOF $19 = Au + Au \quad 7.7 \text{ GeV}$ run-10 full TOF $20 = Au + Au \quad 11.5 \text{ GeV}$ run-10 full TOF 23 = Au + Au 19.6 GeV run-11 full TOF 25 = Au + Au 27 GeV run-11 full TOF

Data	Nev	pythia	ampt	ampt(SM)	urqmd2.3	urqmd3.3p1
pp 200 Run9	183M	653M				
AuAu 200 Run 10	51.4M		84k	73k	663k	136k
AuAu 62.4 Run 10	48.2M		248k	246k	636k	256k
AuAu 39 Run 10	37.9M		328k	298k	836k	236k
AuAu 27 Run 11	46.2M		759k	696k	1.74M	390k
AuAu 19.6 Run 11	27.8M		1.02M	690k	1.73M	410k
AuAu 11.5 Run 10	15.5M		456k	280k	1.84M	492k
AuAu 7.7 Run 10	4.8M		984k	708k	4.92M	2.74M

Experimental Goals:

Cross-sections for p, d, t (³He, α) versus P_T and P_T/A

in p+p, cross-referencing of tracks in jets to jet energy, angles, etc

Coalescence ratios: $B_A vs P_T / A$

interpretable in terms of source volumes

Spectra ratios: $d/p \& t/p vs M_T/A$

(net baryon density)

Theory:

6-D Dynamic Coalescence using various models.... Pythia, AMPT, UrQMD Source radii directly from B_A vs P_T/A several prescriptions & compare to HBT

Comparisons to world's data.....

pythia B2 by E_{jet} bin, 200 GeV

Cuts and PID

Event Cuts: $|Z_{vtx}| < 50, R_{vtx} < 2, |\eta_{asvm}| < 5, |\eta_{asvmTOF}| < 5, N_{tofmatch} > 5$ refmult centrality minimum bias trigger in st_physics stream

Track Cuts: flag=301, N_{hitsfit}/N_{hitsposs}>0.52 "cuts set1": N_{hitsfit}>15, N_{hitsdedx}>10, gldca<2 "cuts set2": N_{hitsfit}>25, N_{hitsdedx}>15, gldca<1 TOF: matchflag>0, |y|ocal| < 1.8, $\beta > 0$

PID:

log-Z cut on POI, p<0.9 (p), p<1.3 (d), p<1.7 (t) "dE/dx-TOF": if TOF info exists ($\sim 65-70\%$), require that M² is consistent with POI full efficiency but mom'n limited, uses TOF to clean up dE/dx where possible

"dE/dx+TOF": log-Z cut on POI, no momentum upper limit require TOF info exists, and require that M² is consistent with POI 65-70% as efficient, but much wider mom'n reach

 $\log(Z) = \log[dE/dx(track)]/[dE/dx(Bichsel)]$ vs. momentum...

absorption pbar handled by geant/embedding Abar cannot be done w/ geant, need to use an empirical approach

feeddown

simulation/reconstruction of full events from some model

reconstruction efficiency embedding

TOF matching

Not done yet: PID Efficiency Sector 20

Light nuclei in p+p and the BES Absorption

geant does not know how to interact antinuclei w/ arbitray materials

so use prescription described in Christof Struck's thesis...

same prescription used in recent antialpha paper after scaling the materials

(remove SVT, add half-depth of TOF)

Absorption Light nuclei in p+p and the BES

geant *does* know how to interact pbars, so one can test the absorption prescription using embedding data!

Uncovered problems in trs

unknown species was given a geantID=0, and then no energy loss, and then no rec. tracks Fix entailed changes to trs and StarClassLibrary to properly include light antinuclei... see RT Ticket #2157.

Lots of technical problems in many different codes.... (many thanks to Hiroshi, Xiangli, Geraldo, Xianglei, Gene, Jason, & Victor!)

Block 1:

dbar in p+p, 200 GeV, run-9
dbar in Au+Au, 200 GeV, run-10
dbar in Au+Au, 11.5 or 39, run-10

Block 2:

tbar in p+p, 200 GeV, run-9 dbar in Au+Au, 200 GeV, run-10 tbar in Au+Au, 11.5 or 39, run-10 pbar in p+p, 200 GeV, run-9 pbar in Au+Au, 200 GeV, run-10 pbar in Au+Au, 11.5 or 39, run-10

```
20101704 DONE
20101706 DONE
20101708 DONE
OOPS! These were done in SL11c.
Comparison to the newly available SL10k_emb
shows different glDCA distributions & efficiencies
```

....need to repeat the Block 1 requests (underway)

I also found some existing embedding productions laying around....

pbar	p+p	200GeV	20101701
pbar	Au+Au	39GeV	20103206
pbar	Au+Au	7.7GeV	20103604

Embedding

🗞 RICE 🥑 STAR 🖈

🕅 RICE 🥔 STAR 🖈

Light nuclei in p+p and the BES Embedding

1 σ cut on dE/dx, then plot probability there is a TOF match for this track vs. P_T....

If TOF match efficiencies are correct, then dE/dx-TOF results and dE/dx+TOF results should lie on top of each other in the overlapping P_T range

Comparison to Lokesh's protons

Lokesh's xsecs are not feeddown corrected, mine are. My FD-uncorrected protons are dead on top of lokesh's p's, my pbar's ~20% less...

Comparison to published d's and dbar's

Ratio checks motivated by coalescence arguments

Light nuclei in p+p and the BES

₿ RI

STAR 🛧

 R_{G} vs P_{T}/A by $\sqrt{s_{NN}}$ and centrality

🗞 RICE 🥔 STAR 🖈

STAR 🛧

Trying to produce p(bar) and A(bar) cross-sections with all corrections for all Au+Au data sets plus p+p

Lots of corrections, and not all are easy to get. ...Getting close though...

Must be careful with PID, merged tracks, TOF-matching, etc.

The corrected cross-sections lead to

 B_A ratios and source radii, comparison to HBT (Φ_{RP} -dependence?)... d/p ratios and baryon densities...

source density profiles, degree of equilibration, & other inferences... *etc...*

widest & most detailed root-s measurement in a single & wide acceptance first measurement of spectra & B_A for antinuclei at low end of SPS range first observation of dependence of B_2 on jet energy

backup

B2 increases ("V" decreases) as collisions get more peripheral

hard-sphere $R = 2.2R_{G}$ conversion of B_A into R_G done via WJL et al., PRC 52, 2004 (1995).

will need to pick a few root-s values and then interpolate...

also "embedding" dbar,tbar ...just for fun – no cost...

STAR Regional Meeting, Kolkata, India January 9-11, 2012

4 4.5

25

dbar efficiency follows pbar efficiency up to $\sim 0.5 \text{GeV/c}$ (?!?)

