Light Nucleus Production in $\mathrm{p}+\mathrm{p}$ and the BES

> W.J. Llope
> Rice University

Outline:
Quick overview of major directions of this analysis
Fragment spectra in p+p collisions
B_{2} and source radii (first measurement at RHIC)
UE vs in-Jet differences, \& dependence on Jet Energy (first measurement anywhere)
Fragment production in BES
antinucleus production cross-sections and B_{2} at low root-s (first measurement anywhere)
source radii from B_{2} vs $\mathrm{P}_{\mathrm{T}} \& \mathrm{~s}_{\mathrm{NN}}$ (some RHIC results at high- $\mathrm{V}_{\mathrm{s}_{\mathrm{NN}}}$, but not at BES/SPS energies) direct comparison to HBT (existing results from SPS, but not RHIC)
(anti)baryon density vs $\sqrt{ } \mathrm{s}_{\mathrm{NN}}$ (significant extension in P_{T} using TOF, and in $\sqrt{ } \mathrm{s}_{\mathrm{NN}}$ in BES data)
Direct comparison to models (urqmd 2.3/3.3p1, AMPT, Pythia)
millions of events (from SUG@R \& davinci) + coalescence
Major effort recently has been on all the corrections
Absorption
Feeddown
Reconstruction Efficiency
TOF Matching
PID Efficiency
.an astoundingly rich data set
from an awesome detector!

Data	Nev	pythia	ampt	ampt(SM)	urqmd2.3	urqmd3.3p1
pp 200 Run9	183 M	653 M				
AuAu 200 Run 10	51.4 M		84 k	73 k	663 k	136 k
AuAu 62.4 Run 10	48.2 M		248 k	246 k	636 k	256 k
AuAu 39 Run 10	37.9 M		328 k	298 k	836 k	236 k
AuAu 27 Run 11	46.2 M		759 k	696 k	1.74 M	390 k
AuAu 19.6 Run 11	27.8 M		1.02 M	690 k	1.73 M	410 k
AuAu 11.5 Run 10	15.5 M		456 k	280 k	1.84 M	492 k
AuAu 7.7 Run 10	4.8 M		984 k	708 k	4.92 M	2.74 M

Experimental Goals:

Cross-sections for $\mathrm{p}, \mathrm{d}, \mathrm{t}\left({ }^{3} \mathrm{He}, \alpha\right)$ versus P_{T} and $\mathrm{P}_{\mathrm{T}} / \mathrm{A}$
in $p+p$, cross-referencing of tracks in jets to jet energy, angles, etc
Coalescence ratios: B_{A} vs $\mathrm{P}_{\mathrm{T}} / \mathrm{A}$
interpretable in terms of source volumes
Spectra ratios: $\mathrm{d} / \mathrm{p} \& \mathrm{t} / \mathrm{p}$ vs $\mathrm{M}_{\mathrm{T}} / \mathrm{A}$
(net baryon density)
Theory:
6-D Dynamic Coalescence using various models.... Pythia, AMPT, UrQMD
Source radii directly from B_{A} vs $\mathrm{P}_{\mathrm{T}} / \mathrm{A}$.... several prescriptions \& compare to HBT

Comparisons to world's data.....

These are the run- 8 points, $\mathrm{p}+\mathrm{p}$ will be superceded by run-9 (lots of TOF)

Summary* so far:	Experiment	Coalescence Picture:	Pythia+ +p
$\mathrm{p}+\mathrm{p}, 200 \mathrm{GeV}$, Run-8:	$\mathrm{B}_{2}=0.02 \mathrm{GeV}^{2}$	$\mathrm{R} \sim 3.3 \mathrm{fm}, \mathrm{p}_{\mathrm{o}} \sim 180 \mathrm{MeV}$	$\Delta \mathrm{p} \sim 210 \mathrm{MeV}$
$\mathrm{d}+\mathrm{Au}, 200 \mathrm{GeV}$, Run-8:	$\mathrm{B}_{2}=0.01 \mathrm{GeV}^{2}$	$\mathrm{R} \sim 4.2 \mathrm{fm}, \mathrm{p}_{\mathrm{o}} \sim 150 \mathrm{MeV}$	$\Delta \mathrm{p} \sim 180 \mathrm{MeV}$

strong increase in B_{2} (strong decrease in "source volume") with inc. $\mathrm{E}_{\text {jet }}$

Event Cuts:

$\left|Z_{\mathrm{vtx}}\right|<50, \mathrm{R}_{\mathrm{vtx}}<2,\left|\eta_{\text {asym }}\right|<5,\left|\eta_{\text {asymTOF }}\right|<5, \mathrm{~N}_{\text {tofmatch }}>5$ refmult centrality minimum bias trigger in st_physics stream

Track Cuts:
flag $=301, \mathrm{~N}_{\text {hitsfii }} / \mathrm{N}_{\text {hitsposs }}>0.52$
"cuts set 1": $\mathrm{N}_{\text {hitsfit }}>15, \mathrm{~N}_{\text {hitsdedx }}>10$, gldca<2
"cuts set2": $\mathrm{N}_{\text {hitsfit }}>25, \mathrm{~N}_{\text {hitsdedx }}>15$, gldca <1
TOF: matchflag>0, |ylocal $\mid<1.8, \beta>0$
PID:
"dE/dx-TOF": $\quad \log -\mathrm{Z}$ cut on POI, $\mathrm{p}<0.9$ (p), $\mathrm{p}<1.3$ (d), $\mathrm{p}<1.7$ (t$)$
if TOF info exists ($\sim 65-70 \%$), require that M^{2} is consistent with POI full efficiency but mom'n limited, uses TOF to clean up dE/dx where possible
"dE/dx+TOF": $\quad \log -\mathrm{Z}$ cut on POI, no momentum upper limit require TOF info exists, and require that M^{2} is consistent with POI $65-70 \%$ as efficient, but much wider mom'n reach
$\log (\mathrm{Z})=\log [\mathrm{dE} / \mathrm{dx}($ track $)] /[\mathrm{dE} / \mathrm{dx}($ Bichsel $)]$ vs. momentum...

rate can be large compared to Abar rate! TOF kills these quite effectively...
absorption
pbar handled by geant/embedding
Abar cannot be done w/ geant, need to use an empirical approach
feeddown
simulation/reconstruction of full events from some model
reconstruction efficiency embedding

TOF matching
Not done yet:
PID Efficiency
Sector 20
geant does not know how to interact antinuclei w/ arbitray materials
so use prescription described in Christof Struck's thesis...
same prescription used in recent antialpha paper after scaling the materials
(remove SVT, add half-depth of TOF)

geant does know how to interact pbars, so one can test the absorption prescription using embedding data!

UrQMD 3.3p1 starsim \& Y2010c geom repairs realistic σ_{Zvtx} bfc.C

TpcRS
MiniMcMk

TpcRS is slow but most realistic. no $\mathrm{dE} / \mathrm{dx}$ fudging!

Uncovered problems in trs
unknown species was given a geantID $=0$, and then no energy loss, and then no rec. tracks
Fix entailed changes to trs and StarClassLibrary to properly include light antinuclei...
see RT Ticket \#2157.

Lots of technical problems in many different codes....
(many thanks to Hiroshi, Xiangli, Geraldo, Xianglei, Gene, Jason, \& Victor!)
Block 1:
dbar in $\mathrm{p}+\mathrm{p}, 200 \mathrm{GeV}$, run-9
dbar in $\mathrm{Au}+\mathrm{Au}, 200 \mathrm{GeV}$, run-10
dbar in $A u+A u, 11.5$ or 39 , run- 10

Block 2:
tbar in $\mathrm{p}+\mathrm{p}, 200 \mathrm{GeV}$, run- 9
dbar in $\mathrm{Au}+\mathrm{Au}, 200 \mathrm{GeV}$, run-10
tbar in $\mathrm{Au}+\mathrm{Au}, 11.5$ or 39 , run-10
pbar in $\mathrm{p}+\mathrm{p}, 200 \mathrm{GeV}$, run-9
pbar in $\mathrm{Au}+\mathrm{Au}, 200 \mathrm{GeV}$, run-10
pbar in $\mathrm{Au}+\mathrm{Au}, 11.5$ or 39 , run- 10

OOPS! These were done in SL11c.
Comparison to the newly available SL10k_emb shows different glDCA distributions \& efficienciesneed to repeat the Block 1 requests (underway)

I also found some existing embedding productions laying around....

pbar	p+p	200 GeV	20101701
pbar	$\mathrm{Au}+\mathrm{Au}$	39 GeV	20103206
pbar	$\mathrm{Au}+\mathrm{Au}$	7.7 GeV	20103604

STAR Regional Meeting, Kolkata, India January 9-11, 2012

1σ cut on $\mathrm{dE} / \mathrm{dx}$, then plot probability there is a TOF match for this track $v s . \mathrm{P}_{\mathrm{T}} \ldots$

If TOF match efficiencies are correct, then $\mathrm{dE} / \mathrm{dx}-\mathrm{TOF}$ results and $\mathrm{dE} / \mathrm{dx}+\mathrm{TOF}$ results should lie on top of each other in the overlapping P_{T} range

Lokesh's xsecs are not feeddown corrected, mine are.
My FD-uncorrected protons are dead on top of lokesh's p's, my pbar's $\sim 20 \%$ less...

Ratio checks motivated by coalescence arguments

STAR ش
STAR Regional Meeting, Kolkata, India January 9-11, 2012

Trying to produce p (bar) and A (bar) cross-sections with all corrections for all $\mathrm{Au}+\mathrm{Au}$ data sets plus $\mathrm{p}+\mathrm{p}$

Lots of corrections, and not all are easy to get.
...Getting close though...
Must be careful with PID, merged tracks, TOF-matching, etc.
The corrected cross-sections lead to B_{A} ratios and source radii, comparison to HBT (Φ_{RP}-dependence?)... d / p ratios and baryon densities... source density profiles, degree of equilibration, \& other inferences... etc...
widest \& most detailed root-s measurement in a single \& wide acceptance first measurement of spectra \& B_{A} for antinuclei at low end of SPS range first observation of dependence of B_{2} on jet energy

backup

B2 increases ("V" decreases) as collisions get more peripheral
hard-sphere $\mathrm{R}=2.2 \mathrm{R}_{\mathrm{G}} \quad$ conversion of B_{A} into R_{G} done via WJL et al., PRC 52, 2004 (1995).

hard-sphere $\mathrm{R}=2.2 \mathrm{R}_{\mathrm{G}}$
conversion of B_{A} into R_{G} done via WJL et al., PRC 52, 2004 (1995).

then scale the sim x -secs to measured x -secs

extremely CPU intensive...
will need to pick a few root-s values and then interpolate...
then scale the sim FD ratios...

STAR Regional Meeting, Kolkata, India January 9-11, 2012

dbar efficiency follows pbar efficiency up to $\sim 0.5 \mathrm{GeV} / \mathrm{c}$ (?!?)

