Detector Construction & Installation

w.j. illope

❄️ TOF DOE Review, BNL
August 22, 2005

Outline:

• Tray mechanical design
 TOFr, TOFr’, TOFr5, &TOFr6

• Impact of full system on STAR
 weight
 power & temperature
 secondary production
 gas containment

• Tray Fabrication
 space and fixtures
 detailed procedure
 126 tray production plan

• Start detector
 simulations
 new based development
 Run-6 prototype
Mechanical Design Summary

3 generations of TOFr trays
 (all rebuilt from the ground up)
all met the physics goals

subsequent trays (TOFr6, ...) will be
simple variants of the TOFr5 design:
- simple, quick, & repeatable to assemble
- very precise detector positioning
- open-box MRPC→FEE testing

Overview of TOFr5 Design

Effects on other STAR subsystems
• weight
• power, cooling, & temperature
• interaction and radiation lengths
• gas containment
D&M: TOFr5 (Run-5)
First attempt at on-board digitization
Back to two layers of on-board electronics
Integrated cooling loop
new batches of MRPCs (USTC & Tsinghua)

“Inner Sides” instead of sawtooths...
lexan machined on hurco machine to few mils
MRPCs held in reveals cut into the inner sides
Inner sides bolt to underside of top assy

- fabrication extremely labor intensive...
 sawtooths, rail assy
- complicated gas sealing...
 gaskets, less sealant
- MRPC placement w/in box too imprecise...
 each sawtooth placed individually
- overall, too tall

“bowing” of bottom assy due to welded feet
small tweaks to box & inner sides design
integration of TINO, TDIG version 2, & cooling

TOFr5 cooling loop tests & efficiency/power estimates:
http://wjllope.rice.edu/~TOF/TOFr5/Ttests/TOFr5_T_tests.htm
4th Generation Prototype (TOFr6)

simpler cooling loop design
 1/4” square → 1/4”x3/8” rectangular

only small tweaks to mechanical design
TINO
 new cooling loop

tweaks to tray fabrication
 bowing from welded feet
 (moving back to pop-rivets)

TINO
 lower power
 no ringing
 fully differential
 multiplicity outputs
 now only need positive LV!

TDIGb
 accepts signals from TINO
 (remove discriminators)
 address timing cross-talk
 multiplicity

Tentative Stop-side detectors for Run-6
 2 trays with single-stack modules
 with “TOFr6” mechanical design
Weight issues

each TOF tray is ~75 lbs, 9,000 lbs total
what are the mechanical safety factors for:
1. “Rails” to TPC OFC epoxy joints
2. TPC support arms and end-structures
3. OFC itself

new ANSYS simulations by Derek Shuman for a 10,000 lb TOF
2. assume 4-point support and 2-point support (one arm misaligned).
3. assume specific model for skin composition (glued-on rails stiffen the structure).

results for 1.
tof rails can support
3.2 klb peel
1.6 Mlb shear
2.2 Mlb tension
→ 1 klb trays would not defeat the epoxy

results for 2.
4-support max stress ~ 12.6 MPa
2-support max stress ~ 24.9 MPa
“well under yield point 214 MPa
for the H5052-H34 Al used...”

results for 3.
Tangential direction normal stresses
“are only 6.5 MPa localized near the support in the 2-arm configuration”
Power, Cooling, & Temperature Issues

TOFr5 electronics drop 140 +/- 10 W (TOFr6 < 100W?)

Efficiency of TOFr5’s embedded 1/4”-square Cu cooling loop measured at RICE
32 Type-T thermocouples inside tray, on electronics, plus ambient, water in&out, etc.
Kinetics 1992/3516 T/C readout via CAMAC to PC
measurement error <0.2 deg C
full complement of TAMP & TDIG electronics installed and powered up
water flow unfortunately 31 deg C (is <25 deg C in STAR)
perforated top assembly!

Water In
(31 °C)
Out

T/C (2)

0.5” Braided Hose, ~30’

Heat Exchanger
3/8” Cu Tubing, 40’

~40’

T/C (2)

TOFr5

Ambient Air T/C (2) (~24 °C)

Run-5 Tray Mechanical
TAMP & TDIG, 8 each
25 T/Cs inside
1/4” Cu square tubing loop, ~16’
max T, water flow off
~52 deg C
HPTDC spec
<60 deg C
regulators spec
<80 deg C
max T w/ warm water
~40 deg C

Power estimates

105 W removed by (warm) water!
(~3/4 of 140W total dropped)

remainder is estimated to be:
convective ~0W
radiative (skin) ~3W
radiative (FEE) ~30W

these calculations suggest radiative power could be ~halved with a solid cover...
TINO also drops total power to <100 W

will repeat these tests using TOFr6 trays
both solid and perforated cover assys
both square and rectangular loops
(improved thermal efficiency)
Secondary production estimates from AGI+gstar simulations full description of MRPCs

TOF: ~6.5% of λ_0
CTB: ~4.9%

→ 32% more than CTB

TOF: ~20% of X_0
CTB: ~15%

→ 33% more than CTB
Gas Containment

best MRPC performance obtained with 90% Freon, 5% iso-butane, & 5% SF6
most early papers on MRPC just call this “the standard mixture”

concern is the detrimental effects that SF6 would have on the TPC performance
Alice result: http://rjd.home.cern.ch/rjd/Alice/frac_SF6.html
“...if an electron is to have a 50 % probability to survive 2.5 m drift, the SF6 level should not exceed 2 ppb.”

Thus, we have used only 95% Freon & 5% iso-butane during Runs 3 through 5...

measured leak rates for 3 TOFr prototypes so far
tray pressurized to ~1” above atmospheric pressure vs time measured w/ sensitive gauge
HV connectors need to be terminated! FEE should be off and cool or on and hot!

→ finite leak rate measured for TOFr (Run-3) - modified CTB box
 welded rail assy
 glued gaskets

→ no measurable leaking for TOFr’ and TOFr5
 TOFr-specific “shoe-box” style gas box
 FEE sealed directly to tray aluminum
Tray Fabrication Assumptions:

• tray structures produced in Houston at Oaks Precision
 QA/QC of fit & finish and size tolerances at RICE

• electronics produced in Houston (RICE, Blue Sky)
 TINO on tray fabrication critical path, and must undergo stricter pre-install testing

• tray Assembly and testing at UT-Austin
 MRPCs shipped to UT at rate of 160/month
 bench tests of each MRPC in China and documented on WWW
 no gas-box tests of MRPCs at UT before insertion into trays (except first few hundred)
 size tolerance testing only

• tray retesting (HV current draw & noise rates) at BNL

Final tray fabrication follows TOFr5 model...
 requires special table that can hold top+cover assembly flat and at a 90 deg angle

Working now within the group to set up the size and skewness specs & tolerances for MRPCs & Trays

manpower assumed is 2.5yr Mechanical Technician and 1 FTE undergraduate for 2yrs at UT
assumes also UT Postdoc (0.5 FTE) for Fabricated Tray testing
 Rice Postdoc (0.5 FTE) for Electronics testing

UT machine shop fabricates inner sides and cooling loops
 labor is contributed...
 raw mtls costs only...

tray fabrication workflow and fabbed tray documentation system is under development.
Space @ RICE

Aluminum pcs, TOF trays, wood table

CMS electronics test area

STAR TOF tray work storage

406 (259)

330 (246)

STAR TOF tray assay table

STAR Start Detector detector assay area

led test stand

330 (246)

STAR TOF tray table

Air Shower Array testing

dark box

tables

STAR TOF detector assay area

STAR Start Detector LED test stand

STAR TOF electronic test stand

STAR TOF electronic test stand

several rows of cabinets for lab electronics, PMTs, & other equipment

1230 (606)

STAR TOF tray work storage

STAR TOF electronics work storage

406 (361)

1230 (606)

STAR TOF electronics lab

SMC

lead glass

406 (341)

406 (361)

406 (189)

406 (259)

406 (189)

lab electronics "cage"

components

worktable, buffer, welder

bandsaw, tool chests

gantry crane

saw

chemicals

bridgeport, tool chests
Fabricated Tray Storage and Shipping:
- Arbitrarily large space in HE Physics Laboratory, ENS Bldg (next to RLM)

RLM 10.306
Cosmic testing of fabricated trays

RLM 10.318A
Tray Assembly (Electronics Prep & Storage)

RLM 10.318
Tray Assembly

RLM 3rd-level (next to machine shop)
Tray Box Cleaning and Storage
general thinking is that these storage fixtures are constructed at UT during the initial ‘gear-up’ phase of the project i.e. during tray parts fab at Oaks...
<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>Duration</th>
<th>Start</th>
<th>Finish</th>
<th>Predecessors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inner Sides available</td>
<td>0 days</td>
<td>Mon 6/19/06</td>
<td>Mon 6/19/06</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cooling Loop available</td>
<td>0 days</td>
<td>Mon 6/19/06</td>
<td>Mon 6/19/06</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Tray Structures and Hardware available</td>
<td>0 days</td>
<td>Mon 6/19/06</td>
<td>Mon 6/19/06</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>TINO & TDIG in Hand</td>
<td>0 days</td>
<td>Mon 6/19/06</td>
<td>Mon 6/19/06</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Wire and Cabling available</td>
<td>0 days</td>
<td>Mon 6/19/06</td>
<td>Mon 6/19/06</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>All Parts in Hand</td>
<td>0 hrs</td>
<td>Mon 6/19/06</td>
<td>Mon 6/19/06</td>
<td>1,2,3,4,5</td>
</tr>
<tr>
<td>7</td>
<td>Tray Structure Prep</td>
<td>14.25 hrs</td>
<td>Mon 6/19/06</td>
<td>Tue 6/20/06</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>inspection & documentation</td>
<td>1 hr</td>
<td>Mon 6/19/06</td>
<td>Mon 6/19/06</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>clean bottom, top, cover & brackets</td>
<td>3.5 hrs</td>
<td>Mon 6/19/06</td>
<td>Mon 6/19/06</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>dip</td>
<td>1 hr</td>
<td>Mon 6/19/06</td>
<td>Mon 6/19/06</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>dry</td>
<td>0.5 hrs</td>
<td>Mon 6/19/06</td>
<td>Mon 6/19/06</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>isopropyl scrub</td>
<td>2 hrs</td>
<td>Mon 6/19/06</td>
<td>Mon 6/19/06</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>bottom assy prep</td>
<td>9.75 hrs</td>
<td>Mon 6/19/06</td>
<td>Tue 6/20/06</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>move bottom assy to bottom prep area</td>
<td>0.25 hrs</td>
<td>Mon 6/19/06</td>
<td>Mon 6/19/06</td>
<td>13</td>
</tr>
<tr>
<td>15</td>
<td>seal inner corners and welds</td>
<td>1 hr</td>
<td>Mon 6/19/06</td>
<td>Mon 6/19/06</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>curing (bottom assy inner)</td>
<td>1 day</td>
<td>Mon 6/19/06</td>
<td>Tue 6/20/06</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>add kapton layer</td>
<td>0.5 hrs</td>
<td>Tue 6/20/06</td>
<td>Tue 6/20/06</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>top assy prep</td>
<td>6 hrs</td>
<td>Mon 6/19/06</td>
<td>Mon 6/19/06</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>move top assy to fixture (top topside up)</td>
<td>0.25 hrs</td>
<td>Mon 6/19/06</td>
<td>Mon 6/19/06</td>
<td>6</td>
</tr>
<tr>
<td>20</td>
<td>install upper brackets</td>
<td>0.25 hrs</td>
<td>Mon 6/19/06</td>
<td>Mon 6/19/06</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>install cover assy</td>
<td>0.25 hrs</td>
<td>Mon 6/19/06</td>
<td>Mon 6/19/06</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>invert top+cover assy (topside down)</td>
<td>0.25 hrs</td>
<td>Mon 6/19/06</td>
<td>Mon 6/19/06</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>seal PEM studs on underside of top assy</td>
<td>1 hr</td>
<td>Mon 6/19/06</td>
<td>Mon 6/19/06</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>curing (top assy inner)</td>
<td>4 hrs</td>
<td>Mon 6/19/06</td>
<td>Mon 6/19/06</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>TAMPT to top assy</td>
<td>19.25 hrs</td>
<td>Mon 6/19/06</td>
<td>Wed 6/21/06</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>TAMP inspection & documentation</td>
<td>0.5 hrs</td>
<td>Mon 6/19/06</td>
<td>Mon 6/19/06</td>
<td>6</td>
</tr>
<tr>
<td>27</td>
<td>invert top+cover assy (topside up)</td>
<td>0.25 hrs</td>
<td>Mon 6/19/06</td>
<td>Mon 6/19/06</td>
<td>25</td>
</tr>
<tr>
<td>28</td>
<td>remove cover assy and upper brackets</td>
<td>0.5 hrs</td>
<td>Mon 6/19/06</td>
<td>Mon 6/19/06</td>
<td>29</td>
</tr>
<tr>
<td>29</td>
<td>reclean near big holes</td>
<td>1 hr</td>
<td>Mon 6/19/06</td>
<td>Mon 6/19/06</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>install ground washers</td>
<td>0.5 hrs</td>
<td>Mon 6/19/06</td>
<td>Tue 6/20/06</td>
<td>31</td>
</tr>
<tr>
<td>31</td>
<td>seal and bolt down TAMPs to top assy</td>
<td>3 hrs</td>
<td>Tue 6/20/06</td>
<td>Tue 6/20/06</td>
<td>32</td>
</tr>
<tr>
<td>32</td>
<td>curing (TAMP to top assy)</td>
<td>1 day</td>
<td>Tue 6/20/06</td>
<td>Wed 6/21/06</td>
<td>33</td>
</tr>
<tr>
<td>33</td>
<td>MRPCs</td>
<td>1 hr</td>
<td>Mon 6/19/06</td>
<td>Mon 6/19/06</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>inspection & documentation</td>
<td>1 hr</td>
<td>Mon 6/19/06</td>
<td>Mon 6/19/06</td>
<td>6</td>
</tr>
<tr>
<td>35</td>
<td>Loading the Inverted Top Assy</td>
<td>16.77 hrs</td>
<td>Wed 6/21/06</td>
<td>Fri 6/23/06</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>install upper brackets and cover assy</td>
<td>0.5 hrs</td>
<td>Wed 6/21/06</td>
<td>Wed 6/21/06</td>
<td>34</td>
</tr>
<tr>
<td>37</td>
<td>invert top+cover assy (topside down)</td>
<td>0.25 hrs</td>
<td>Wed 6/21/06</td>
<td>Wed 6/21/06</td>
<td>40</td>
</tr>
<tr>
<td>38</td>
<td>install lower brackets</td>
<td>0.25 hrs</td>
<td>Wed 6/21/06</td>
<td>Wed 6/21/06</td>
<td>41</td>
</tr>
<tr>
<td>39</td>
<td>install "closer" inner side</td>
<td>0.25 hrs</td>
<td>Wed 6/21/06</td>
<td>Wed 6/21/06</td>
<td>42</td>
</tr>
<tr>
<td>40</td>
<td>rotate fixture (top on side, closer inner side horizontal)</td>
<td>0.02 hrs</td>
<td>Wed 6/21/06</td>
<td>Wed 6/21/06</td>
<td>43</td>
</tr>
<tr>
<td>41</td>
<td>install MRPCs inc connections to TAMPT</td>
<td>4 hrs</td>
<td>Wed 6/21/06</td>
<td>Thu 6/22/06</td>
<td>44</td>
</tr>
<tr>
<td>42</td>
<td>install cross-pieces and "other" inner side</td>
<td>0.25 hrs</td>
<td>Thu 6/22/06</td>
<td>Thu 6/22/06</td>
<td>45</td>
</tr>
<tr>
<td>ID</td>
<td>Task Name</td>
<td>Duration</td>
<td>Start</td>
<td>Finish</td>
<td>Predecessors</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>----------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>47</td>
<td>rotate fixture (topside down)</td>
<td>0.25 hrs</td>
<td>Thu 6/22/06</td>
<td>Thu 6/22/06</td>
<td>46</td>
</tr>
<tr>
<td>48</td>
<td>install reynolds connectors with sealant</td>
<td>0.5 hrs</td>
<td>Thu 6/22/06</td>
<td>Thu 6/22/06</td>
<td>47</td>
</tr>
<tr>
<td>49</td>
<td>install HV bus wiring to each MRPC</td>
<td>2 hrs</td>
<td>Fri 6/23/06</td>
<td>Fri 6/23/06</td>
<td>48</td>
</tr>
<tr>
<td>50</td>
<td>install gas feedthorughs & interior tubing</td>
<td>0.5 hrs</td>
<td>Thu 6/22/06</td>
<td>Thu 6/22/06</td>
<td>47</td>
</tr>
<tr>
<td>51</td>
<td>curing (F/T connectors on top assy)</td>
<td>2 hrs</td>
<td>Thu 6/22/06</td>
<td>Thu 6/22/06</td>
<td>48,50</td>
</tr>
<tr>
<td>52</td>
<td>HV tests</td>
<td>2 hrs</td>
<td>Thu 6/22/06</td>
<td>Thu 6/22/06</td>
<td>51</td>
</tr>
<tr>
<td>53</td>
<td>MRPC connectivity tests</td>
<td>6 hrs</td>
<td>Thu 6/22/06</td>
<td>Fri 6/23/06</td>
<td>51</td>
</tr>
<tr>
<td>54</td>
<td>Tray Closing</td>
<td>9.5 hrs</td>
<td>Fri 6/23/06</td>
<td>Mon 6/26/06</td>
<td>55</td>
</tr>
<tr>
<td>55</td>
<td>test fit bottom assy onto top assy</td>
<td>0.25 hrs</td>
<td>Fri 6/23/06</td>
<td>Fri 6/23/06</td>
<td>56</td>
</tr>
<tr>
<td>56</td>
<td>scribe</td>
<td>0.25 hrs</td>
<td>Fri 6/23/06</td>
<td>Fri 6/23/06</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>remove bottom assy and apply sealant</td>
<td>0.5 hrs</td>
<td>Fri 6/23/06</td>
<td>Fri 6/23/06</td>
<td>58</td>
</tr>
<tr>
<td>58</td>
<td>install bottom assy, install machine screws</td>
<td>1 day</td>
<td>Fri 6/23/06</td>
<td>Mon 6/26/06</td>
<td>59</td>
</tr>
<tr>
<td>59</td>
<td>curing (bottom assy onto top assy)</td>
<td>1 day</td>
<td>Fri 6/23/06</td>
<td>Mon 6/26/06</td>
<td>59</td>
</tr>
<tr>
<td>60</td>
<td>tray closed</td>
<td>0 hrs</td>
<td>Mon 6/26/06</td>
<td>Mon 6/26/06</td>
<td>60</td>
</tr>
<tr>
<td>61</td>
<td>Electronics installation and Testing</td>
<td>32.25 hrs</td>
<td>Mon 6/26/06</td>
<td>Fri 6/30/06</td>
<td>66</td>
</tr>
<tr>
<td>62</td>
<td>rotate tray (topside up)</td>
<td>0.25 hrs</td>
<td>Mon 6/26/06</td>
<td>Mon 6/26/06</td>
<td>62</td>
</tr>
<tr>
<td>63</td>
<td>move completed tray to tray test area</td>
<td>0.5 hrs</td>
<td>Mon 6/26/06</td>
<td>Mon 6/26/06</td>
<td>65</td>
</tr>
<tr>
<td>64</td>
<td>Gas flow for testing</td>
<td>8.25 hrs</td>
<td>Mon 6/26/06</td>
<td>Tue 6/27/06</td>
<td>67</td>
</tr>
<tr>
<td>65</td>
<td>connect tray to gas system</td>
<td>0.25 hrs</td>
<td>Mon 6/26/06</td>
<td>Mon 6/26/06</td>
<td>68</td>
</tr>
<tr>
<td>66</td>
<td>gas flow started</td>
<td>1 day</td>
<td>Mon 6/26/06</td>
<td>Tue 6/27/06</td>
<td>69</td>
</tr>
<tr>
<td>67</td>
<td>Gas Leak testing with sniffer</td>
<td>1 day</td>
<td>Mon 6/26/06</td>
<td>Tue 6/27/06</td>
<td>68</td>
</tr>
<tr>
<td>68</td>
<td>Gas Quality Acceptable for HV tests</td>
<td>0 hrs</td>
<td>Tue 6/27/06</td>
<td>Tue 6/27/06</td>
<td>69</td>
</tr>
<tr>
<td>69</td>
<td>TDIG Installation</td>
<td>17.5 hrs</td>
<td>Mon 6/26/06</td>
<td>Wed 6/28/06</td>
<td>72</td>
</tr>
<tr>
<td>70</td>
<td>remove cover assy and upper brackets</td>
<td>0.5 hrs</td>
<td>Mon 6/26/06</td>
<td>Tue 6/27/06</td>
<td>73</td>
</tr>
<tr>
<td>71</td>
<td>install cooling loop</td>
<td>0.5 hrs</td>
<td>Tue 6/27/06</td>
<td>Tue 6/27/06</td>
<td>74</td>
</tr>
<tr>
<td>72</td>
<td>install TDIG boards</td>
<td>2 hrs</td>
<td>Tue 6/27/06</td>
<td>Tue 6/27/06</td>
<td>75</td>
</tr>
<tr>
<td>73</td>
<td>install LV bus (lugs on-tray to boards)</td>
<td>1 hr</td>
<td>Tue 6/27/06</td>
<td>Tue 6/27/06</td>
<td>76</td>
</tr>
<tr>
<td>74</td>
<td>Install TDIG cabling (canbus etc)</td>
<td>2 hrs</td>
<td>Wed 6/28/06</td>
<td>Wed 6/28/06</td>
<td>77</td>
</tr>
<tr>
<td>75</td>
<td>LV power test</td>
<td>1.5 hrs</td>
<td>Wed 6/28/06</td>
<td>Wed 6/28/06</td>
<td>78</td>
</tr>
<tr>
<td>76</td>
<td>install LV test cables (supply to lugs on-tray)</td>
<td>0.5 hrs</td>
<td>Wed 6/28/06</td>
<td>Wed 6/28/06</td>
<td>79</td>
</tr>
<tr>
<td>77</td>
<td>LV power-up and documentation</td>
<td>1 hr</td>
<td>Wed 6/28/06</td>
<td>Wed 6/28/06</td>
<td>80</td>
</tr>
<tr>
<td>78</td>
<td>LV test passed</td>
<td>0 hrs</td>
<td>Wed 6/28/06</td>
<td>Wed 6/28/06</td>
<td>81</td>
</tr>
<tr>
<td>79</td>
<td>Firmware and other electronics setup</td>
<td>2 hrs</td>
<td>Wed 6/28/06</td>
<td>Wed 6/28/06</td>
<td>82</td>
</tr>
<tr>
<td>80</td>
<td>HV Performance</td>
<td>4.25 hrs</td>
<td>Tue 6/27/06</td>
<td>Wed 6/28/06</td>
<td>83</td>
</tr>
<tr>
<td>81</td>
<td>connect HV cables</td>
<td>0.25 hrs</td>
<td>Tue 6/27/06</td>
<td>Tue 6/27/06</td>
<td>84</td>
</tr>
<tr>
<td>82</td>
<td>ramp HV and collect V/I data</td>
<td>4 hrs</td>
<td>Tue 6/27/06</td>
<td>Wed 6/28/06</td>
<td>85</td>
</tr>
<tr>
<td>83</td>
<td>Tray Stable at Full Voltage</td>
<td>0 days</td>
<td>Wed 6/28/06</td>
<td>Wed 6/28/06</td>
<td>86</td>
</tr>
<tr>
<td>84</td>
<td>DAQ Performance</td>
<td>18 hrs</td>
<td>Wed 6/28/06</td>
<td>Fri 6/30/06</td>
<td>87</td>
</tr>
<tr>
<td>85</td>
<td>Noise rate tests, dead channel identification</td>
<td>2 days</td>
<td>Wed 6/28/06</td>
<td>Fri 6/30/06</td>
<td>88</td>
</tr>
<tr>
<td>86</td>
<td>INL Calibration</td>
<td>1 day</td>
<td>Thu 6/29/06</td>
<td>Thu 6/29/06</td>
<td>89</td>
</tr>
<tr>
<td>87</td>
<td>Final test documentation</td>
<td>0 hrs</td>
<td>Fri 6/30/06</td>
<td>Fri 6/30/06</td>
<td>90</td>
</tr>
<tr>
<td>88</td>
<td>Tray complete & Ready for Cosmics Testing</td>
<td>0 hrs</td>
<td>Fri 6/30/06</td>
<td>Fri 6/30/06</td>
<td>90</td>
</tr>
</tbody>
</table>
The procedure is generally a series of several “few minute” operations per tray punctuated by several ~24 hrs periods of waiting per tray (sealant curing, gas flow, etc...)

Fabrication model:
at the end of each week
two trays emerge from the tray prep area
next week these will be in the tray assembly area
& two trays emerge from the tray assembly area
next week these will be in the tray testing area (gas flow, INL, noise rates, HV draw, etc)

Assumed manpower (1 FTE Tech + 2 FTE UG) and floor space sufficient
Gives some headroom in fabrication/testing schedule w.r.t. MRPC and FEE production

<table>
<thead>
<tr>
<th>Tray Prep</th>
<th>Tray Assy</th>
<th>Tray Test</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week N</td>
<td>Week N+1</td>
<td>Week N+2</td>
<td>.....</td>
</tr>
<tr>
<td>Date</td>
<td>No. Trays</td>
<td>No./week</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>10/06</td>
<td>4 trays</td>
<td>0.5 trays/week</td>
<td></td>
</tr>
<tr>
<td>01/07</td>
<td>10</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>04/07</td>
<td>10</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>07/07</td>
<td>14</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>10/07</td>
<td>14</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>01/08</td>
<td>16</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>04/08</td>
<td>18</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>07/08</td>
<td>20</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>09/08</td>
<td>20</td>
<td>1.7</td>
<td></td>
</tr>
</tbody>
</table>

installation plan:
“Skill-of-the-Craft”
can install either in AB or WAH
Both US & Chinese institutions participate in installation and commissioning

installation of trays behind the TPC support arms (3 & 9 o’clock, East & West)
requires a fixture to hold the TPC while one support arm is removed.
Start-Side Status and Plans

pVPD detectors still in place (4th run now) and seem to be doing as well as always...
But an increased coverage within a similar integration volume is needed

Implement prototype for Run-6, final start detector installed before FY08 with new PMTs...

Basic idea
 pVPD 2” linear PMTs + significant shielding \rightarrow 1.5” mesh PMTs + no shielding...
 increase number of detector channels on each side within same integration volume...

 same Z-location as pVPD (Runs-2 to -5) but smaller radial extent...
 total weight practically unchanged

Electronics for Run-6 prototype presumably exactly the same boards as on pVPD in Run-5

HV for prototype and final system from BBC’s LeCroy 1440 supply

PMTs for prototype detector will be R5946 PMTs from decommissioned TOFp
 already separated from the TOFp slats, and gain & dark current tested.
 Pb converter + Scint (a few chs on each side will use quartz or lead glass instead)

 New PMTs for the final detector are costed
 purchase FY07, to be installed in final structures and ready for FY08 run...

Main R&D developments:
 Detector design, based on full simulations
 PMT base design, need high stability and high rate capability
Simulations of the Upgraded pVPD (Geometry)

- Strict comparison btw starsim geometry and CADD files from STSG (discrepancies found!)
- First definition of many pipe & I-beam support structure pieces missing from starsim geometry
- Definition of several possible geometries for upVPD
- Performance of the different designs in p+p and Au+Au evts

Simulations of the Upgraded pVPD (Performance)

- concentrate on minimum bias $p+p$ collisions (pythia, MSEL=2)
- study efficiency by which detector can produce start times for the different detector geometries

"1.or.1" efficiency improves from ~55% to ~80-90%

"1.and.1" efficiency improves from ~10% to ~35-45%

~400% improvement for ~1.5% of the cost
New Bases for the Upgraded pVPD

(Vahe Ghazikhanian, J. Mitchell, WJL)

Intended for low-power & high-rate operation with R5946 mesh PMTs

Developed one Linear base, but higher rate than std. Hamamatsu design
 Linear base drops ~2W at 2kV → >50 °C inside detector assembly...

Developed 3 versions of transistor bases
 MOSFETs are primary voltage divider, current 1/10th of that for the linear base...
 additional factor 10 current drop possible with different bias supply to MOSFETs (resistor change)...

Burned-in for ~1 wk at UCLA, then LED rate-tested at Rice
 Can’t see any rate-dependent sag in any of the new bases (several nC pulses, 10’s of kHz)

Parts available for ~3 more of latest design transistor base, will build more before Run-6
Run-6 prototype
19 detectors/side
test scintillator, quartz, and lead-glass as optical element
R5946 PMTs from TOFp
electronics from Run-5

Run-8++ “final” detector
24 chs/side
new PMTs purchased FY07