DETECTOR DESIGN & CONSTRUCTION

w.j. llope ☆ TOF Review, BNL January 26-27, 2006

Outline:

- Tray mechanical design TOFr, TOFr', TOFr5, &TOFrX
- Impact of full system on STAR
- Integration Volumes
- MRPC design, materials, tolerances
- High Voltage
- Start detector

D&M: TOFr (Run-3)

first implementation of the MRPC technology in a collider experiment readout uses (TOFp's extremely well-understood) CAMAC DAQ → do these detectors work at all for us?

"sawtooths" U

USTC & CERN MRPCs

standard CTB tray

- fabrication extremely labor intensive... sawtooths, rail assy
- complicated gas sealing... gaskets, sealant (was also *wrong* sealant)
- MRPC placement w/in box too imprecise... each sawtooth placed individually
- overall, too tall

welded/tapped rail assembly (glued gaskets also)

final TOFr tray (note many cables not shown!)

FEE layer F/T layer

D&M: TOFr' (Run-4)

completely new tray and electronics

first system to use a TOF-specific box, not a recycled CTB box one FEE layer, which also closes the gas volume new batches of MRPCs (USTC, Tsinghua)

TFEE "Shoebox" top

"last minute" cooling loop

- fabrication extremely labor intensive... sawtooths, rail assy
- complicated gas sealing... gaskets, less sealant (but the correct sealant this time)
- MRPC placement w/in box too imprecise... each sawtooth placed individually
- overall, too tall

FEE dumped a lot of heat into the box increased MRPC current draw, & noise rates... timing seemed o.k. but...

D&M: TOFr5 (Run-5)

First attempt at on-board digitization Back to two layers of on-board electronics Integrated cooling loop new batches of MRPCs (USTC & Tsinghua)

"Inner Sides" instead of sawtooths...

lexan machined on hurco machine to few mils MRPCs held in reveals cut into the inner sides Inner sides bolt to underside of top assy

- fabrication extremely labor intensive... sawtooths, rail assy
- complicated gas sealing... gaskets, less sealant
- MRPC placement w/in box too imprecise... each sawtooth placed individually
- overall, too tall

small tweaks to box & inner sides design integration of TINO, TDIG version 2, & cooling

TOFr5 cooling loop tests & efficiency/power estimates: http://wjllope.rice.edu/~TOF/TOFr5/Ttests/TOFr5_T_tests.htm

Mechanical Design Summary

3 generations of TOFr trays (all rebuilt from the ground up) all met the physics goals

subsequent trays will be sensibly simplified variants of the TOFr5 design:

- simple, quick, & repeatable to assemble
- gas-tight (by simplified design)
- very precise detector positioning

- open-box MRPC→FEE testing air-core transformer tests time-domain reflectometry tests

Next Generation Tray....

simpler cooling loop design 1/4" square → 1/4"x3/8" rectangular 2 shims/TDIG disappear...

only small tweaks to mechanical design

TINO

lower power no ringing? fully differential multiplicity outputs on-chip now only need positive LV

next TDIG

accepts signals from TINO address timing cross-talk multiplicity stretching for start-side ToT?

Effects on other STAR subsystems

- weight
- power, cooling, & temperature
- interaction and radiation lengths
- gas containment

Weight issues

each TOF tray is ~75 lbs, 9,000 lbs total what are the mechanical safety factors for:

- 1. "Rails" to TPC OFC epoxy joints
- 2. TPC support arms and end-structures
- 3. OFC itself

new ANSys simulations by Derek Shuman for a 10,000 lb TOF

- 2. assume 4-point support and 2-point support (one arm misaligned).
- 3. assume specific model for skin composition (glued-on rails stiffen the structure).

results for 1.

tof rails can support 3.2 klb peel 1.6 Mlb shear 2.2 Mlb tension → 1 klb trays would not defeat the epoxy

results for 2. 4-support max stress ~ 12.6 MPa 2-support max stress ~ 24.9 MPa

"well under yield point 214 MPa for the H5052-H34 Al used..."

results for 3.

Tangential direction normal stresses "are only 6.5 MPa localized near the support in the 2-arm configuration" Power, Cooling, & Temperature Issues

TOFr5 electronics drop 140 +/- 10 W (TOFr6 < 100W?)

Efficiency of TOFr5's embedded 1/4"-square Cu cooling loop measured at RICE 32 Type-T thermocouples inside tray, on electronics, plus ambient, water in&out, etc. Kinetics 1992/3516 T/C readout via CAMAC to PC measurement error <0.2 deg C full complement of TAMP & TDIG electronics installed and powered up water flow unfortunately 31 deg C (is <25 deg C in STAR) perforated top assembly!

http://wjllope.rice.edu/~TOF/TOFr5/Ttests/TOFr5_T_tests.htm

Power estimates

105 W removed by (warm) water! (~3/4 of 140W total dropped)

remainder is estimated	to be:
convective	$\sim 0 W$
radiative (skin)	~3W
radiative (FEE)	~30W

these calculations suggest radiative power could be ~halved with a solid cover... TINO also drops total power to <100 W

will repeat these tests using TOFr6 trays both solid and perforated cover assys both square and rectangular loops (improved thermal efficiency)

TOF Tray cooling using MCW

Recent upgrade of STAR MCW added stand alone 80-ton chiller This included for TOF 35 kW electronics racks and 30 kW trays Will use the same water distribution system as for BEMC SMD's

action item: define cooling water distribution system....

Total power assumption is 120*140W = 17 kW (TAMP) or 120*100W = 12 kW (TINO) Cooling requirements:

Input temperature24 deg. C max,Flow rate2 Gpm max,Pressure150 psi max,

20 deg. C nominal 1.5 Gpm nominal 50 psi nominal (braided hose rating=200 psi) Secondary production estimates from AGI+gstar simulations full description of MRPCs

> TOF: ~6.5% of λ_0 CTB: ~4.9%

 \rightarrow 32% more than CTB

TOF: ~20% of X₀ CTB: ~15%

 \rightarrow 33% more than CTB

Gas Containment

best MRPC performance obtained with ~90% Freon, ~5% iso-butane, & 1-5% SF-6 all early papers on MRPCs call this the "standard mixture"

A concern is the detrimental effects that SF6 would have on the TPC/FTPC performance Alice result: http://rjd.home.cern.ch/rjd/Alice/frac_SF6.html

"...if an electron is to have a 50 % probability to survive 2.5 m drift,

the SF6 level should not exceed 2 ppb."

Thus, we have used only 95% Freon & 5% iso-butane during Runs 3 through 5...

MRPC noise rates and timing performance improve **dramatically** w/ addition of ~1% SF-6. (documented by Crispin/ALICE).

Tray Materials

Item	Material	Qty/tray	Rating or Comment
Tray Mechanical			
Bottom Assy	Welded Aluminum, 50mil	1	same CTB, TOFp, & all 3 TOFr's
Top Assy	Welded Aluminum, 90mil	1	same as TOFr' & TOFr5
Cover Assy	Welded Aluminum, 50mil	1	same as TOFr5, but unperforated
Feet	Braked Aluminum, 90mil, welded on	2	same as CTB, TOFp, & all 3 TOFr's
Standoff strips	UHMW Polyethylene	4	same as CTB, TOFp, & all 3 TOFr's
Inner Sides	Lexan, ~90"x~3"x1/4", milled reveals	2	same design as TOFr5 (TOFr5 used acrylic)
Sealant	DC 730 Freon-Resistent Sealant	~2 oz	same as TOFr' & TOFr5
Hardware	teflon (inner sides) or SS (tray body)	~40	same as TOFr5
Таре	Kapton, 2mil-thick	~20ft	same as all 3 TOFr's
HV			
F/T connectors	Kings 1064 (Reynolds-equiv)	2	10 kV
Interior Bus	Rowe R790-1522	~10' x 2	15 kV, 5A
Fusion tape	Rowe GL30R67WO	~20	~3 layers per splice, 40mil/layer, 12 kV/layer
Gas			
F/T connectors	Swagelok SS for 1/4" tubing	2	same as all 3 TOFr's
interior tubing	generic 1/4" polyflow, ~90"	1	same as all 3 TOFr's
Water			
barb fittings	custom (UT shop), Brass	2	same as TOFr5
hose to fittings	Vinyl braided, two hose clamps per fitting	2	200 psi (1.5x max pump pressure in STAR)
cooling loop	custom, Copper, 1/4"x3/8", 40mil wall	1	must be leakless @ >200 psi (UT test)

tray total weight75 poundstray total volume40 liters

integrated & efficient water path electronics completely enclosed in solid metal box

Integration Volumes...

allows ~ 2 : for cabling bends

Mechanical mounting

"Feet" under TOF boxes register on "rails" glued to the TPC OFC.

action item: actually measure weight of TOFr5

action item: select one tray from initial production mount on a rail (these exist @ Rice) as if in 3 or 9 o'clock posn (100% load on 1 rail) load tray and show one rail can support 3*75 = 225lbs without failure of the welds.

TOFr5 "height" as installed (for Run-6). CTB TOFr5 BEMC LNO

TOFr5 (as just installed for Run-6)

, measured gap to BEMC is ~ 0.5 "

CTB

measurements i made before run-5 show ~3/16" max variation in radial distance between CTB & EMC measured each end of ~4 CTB trays at both ~4 and ~8 o'clock posns on both east and west...

+/-36mil radial variation due to rail/strip geometry

budget is ~400mils (BEMC screws).

MRPC List of Materials

material	type	Dimension (mm)	Tolerance (mm)	quantity
			Length, Thickness	
Outer glass	Shenzhen	206×78×0.7	±0.1,±0.01	2
Inner glass	Shenzhen	200×61×0.54	±0.1,±0.01	5
Graphite film	ESD EMI Engineering	202×74×0.13	-1.0	2
	Corp.Japan,SR>500k			
	ohm/□			
Mylar film	Dupont Corp.	212×84×0.35	±0.1	2
Honeycomb board	Aoxing Corp.	$208 \times 84 \times 4.0$	$\pm 1.0, \pm 0.1$	2
PCB	Yuandong Corp.	210×94×1.5	$\pm 0.1, \pm 0.01$	2
	(1940) A 2007	6pads, 31.5×63/pad		
L shape supporter	Weishi Corp.	height:3.8	-0.05	4
Nylon wire	Germany	ф0.22	± 0.005	800cm
Double side tape	3M Corp., type 9690	210×84×0.13	±0.5	4
RTV	CAF4, France		1	
Nylon screw	Shenzhen	M2.5×12		14

Proposed by Chinese Groups

action item: agree to final tolerances as +X (max) -Y (max), rejection criteria

China technical review, April'06 Beijing

Survey of MRPC dimensions and Tolerances

carefully measured all available (prototype) MRPCs
width and height to ~2mils
length to ~1/32"
also form distance differences
→ "skewness" (effects on performance?)...

Adam Meier and WJL http://www.bonner.rice.edu/~adammm/MRPCpage.html

Height and Width bear only on Inner Sides design "reveals" in Inner Sides typically over-sized by 20mils.

Length has a hard limit.

bottom assembly max inner(outer) width is 8.4"(8.5") and is set in stone.

Width also excessive...

Bears only on sizing of reveals in the Inner Sides, but needs better QC

Bears only on sizing of reveals in the Inner Sides, but needs better QC

Choice of HV Power Supply.

- CAEN SY127 mainframe with A631 pods has been used to supply HV to MRPCs (some problems have been encountered during last two runs - failed A631 modules).
- Each SY127 accommodates 10 A631 pods. Each A631 pod (negative and positive output versions available) supplies 4 independent floating channels. Each output could supply up to 8 KV at 100 uA. (One fully equipped SY127 would serve the entire TOF system). <u>Output current limited internally and also by external limiting resistors located @ distribution boxes</u>.
- Distribution boxes located on the magnet will fan out each pair of + and HV to up to 10 trays. <u>These boxes will supply required isolation</u>, filtering, current limiting and grounding of the HV (see figure on the next page).
- CPE Italia SPA (rated ~20 KV) cables (HV RG-58) will be used for HV distribution. <u>These cables have been flame tested by Phenix Collaboration</u>.
- Kings (or Reynolds equivalent)) 1065 series 10 KV (DC tested to 25 KV) will be used to interface the HV to power supplies, distribution boxes, and the trays. (The new Reynolds equivalent connectors are rated at 15 KV @ approximately the same cost).
- Remote control and monitoring of the SY127 will be done through CAENET (PC based A1303 PCI-HS CAENET controller already used to control HV system in the past few years).

TOF High Voltage System Requirements.

- High Voltage to provide symmetric HV up to +/- 7.5 KV @ few uA/tray (this current takes into account Beam on condition scaled to RHIC upgrade luminosities).
- Remote programability/monitoring: Voltage, current limits, ramping rates, voltage and current monitoring (10 nA resolution).
- Isolation: power supply outputs must be floating. Furthermore, since one set of plus and minus outputs supply current for up to 10 trays tray inputs are isolated from other trauys to avoid interference.
- HV will be interfaced to STAR interlock system.
- Remote control software will be based on EPICS (or LabView) and will be interfaced to STAR controls (logging and alarms).

LabView GUI for SMD TCP/IP-based HV Control Program for CAEN SY1527 Mainframe Developed by UCLA.

SMD_HV_53.vi		X					
SMD HIGH VOLTAGE CONTROL							
POWER	Current Mode Current Time Time Remaining for HV Ramp Up (17:09 PM)	ALARM MUTE ALARM Alarm Status					
SMD Module Status		Interlock					
1 12 25 37 49 2 14 26 38 50 3 15 27 38 51 4 16 28 40 52 5 17 29 41 53 6 18 30 42 54 7 19 31 43 55 8 20 32 44 56 9 21 33 45 57 10 22 34 46 58 11 23 35 47 59 12 24 36 48 50	61 73 85 97 109 52 74 85 98 110 53 75 87 99 111 54 76 88 100 112 55 77 89 101 112 55 77 89 101 112 55 77 89 101 112 65 78 90 102 114 67 79 91 103 115 68 80 92 104 116 69 81 93 105 117 70 82 94 106 118 71 83 95 107 119 72 84 96 108 120	Server Timeout					
•		*					

Start-Side Status and Plans

pVPD detectors still in place (4th run now) and seem to be doing as well as always... But an increased coverage within a similar integration volume is needed

Implement prototype for Run-6

if prototype performs adequately, prototype will be the deliverable for TOF Project

Basic idea

pVPD 2" linear PMTs + significant shielding \rightarrow 1.5" mesh PMTs + no shielding... increase number of detector channels on each side within same integration volume...

same Z-location as pVPD (Runs-2 to -5) but smaller radial extent... total weight 2/3 of pVPD

Electronics for Run-6 prototype exactly the same boards as on pVPD in Run-5

HV for prototype and final system from BBC's LeCroy 1440 supply, cabled & ready now.

PMTs for prototype detector will be R5946 PMTs from decommissioned TOFp already separated from the TOFp slats, and gain & dark current tested. Pb converter + Scint (a few chs on each side will use quartz or lead glass instead)

Main R&D developments:

Detector design, based on full simulations PMT base design, need high stability and high rate capability

Y2004X

Simulations of the Upgraded pVPD (Geometry)

- Strict comparison btw starsim geometry and CADD files from STSG (discrepancies found!)
- First definition of many pipe & I-beam support structure pieces missing from starsim geometry
- Definition of several possible geometries for upVPD
- Performance of the different designs in p+p and Au+Au evts

Simulations of the Upgraded pVPD (Performance)

- concentrate on minimum bias p+p collisions (pythia, MSEL=2)
- study efficiency by which detector can produce start times for the different detector geometries

New Bases for the Upgraded pVPD

Intended for low-power & high-rate operation with R5946 mesh PMTs

Developed one Linear base, but higher rate than std. Hamamatsu design Linear base drops ~2W at 2kV → >50 °C inside detector assembly...

Developed 3 versions of transistor bases

MOSFETs are primary voltage divider, current $1/10^{th}$ of that for the linear base...

additional factor 10 current drop possible with different bias supply to MOSFETs (resistor chge)...

Burned-in for ~1 wk at UCLA, then LED rate-tested at Rice

Can't see any rate-dependent sag in any of the new bases (several nC pulses, 10's of kHz) Parts available for ~3 more of latest design transistor base, will build more before Run-6

MOSFET bases for new Start Detector: "2*(max V) + 1kV testing"

no current discontinuities... no corona...

fitted slope consistent with surface resisitivity of FR-4...

removal of conformal coating resulted in visible discharges at that location...

(each labelled "Pb enclosed. Do Not Disassemble" - same as for pVPD)...

Z-location for upVPD is the same as for present pVPD smaller Z-extent and weight now though

