## TOFp Status

W.J. Llope, N. Adams, P. Sappenfield, E. Rareshide, S. Becker, G. Eppley, G. Mutchler, and E. Platner for the STAR-TOFp group

11/18/98 TOFp Proposal released
12/01/98 Review committee formed and charged
12/15/98 VideoCon Review...
01/06/99 ...more discussions with review committee
04/13/99 Committee report released and
SysTest-I Proposal requested
04/22/99 SysTest-I Proposal released
05/21/99 SysTest-I approved by spokesman
06/08/99 $20 \mathrm{k} \$$ located to begin SysTest-I
(special thanks to Tim Hallman)
$\rightarrow$ roughly five month pause....
but now very much underway on Systest-I...
Appropriateness of Flat-Coax cable
Performance of CW bases
Performance of custom FEE
Performance overall inc. CAMAC readout
Manpower?
The Start Detector we need.
On track for re-review in Sept 1999 Install during March 2000 Shutdown

## SysTest-I Schematic



Also on hand: Discriminators ADC/TDC Scopes

P/S 704 (4), 715 ... LRS 621BL and 623B ... Ortec 934cfd ... P/S 706 ( $\infty$ ) LRS 2249A (4), 2228A (2), 2228 (3) ... P/S 7186 (2), P/S 7186H (3)
HP Infinium (1.5 GHz, $8 \mathrm{GS} / \mathrm{s}$ ) \& Tektronix TDS640A (500 MHz, $2 \mathrm{GS} / \mathrm{s}$ )

The Present Set-up...
not shown:
Oven, HVSys cells



## Comparison of Flat-Coax and RG58

no discernable difference in cable rise times... both have $\tau \sim 5$ ns per 250 '


Sine wave attenuation Range 0.1-20 MHz Measured

250ft RG58-AU 250ft Flat Coax Plot equiv. 100ft of cable


Signal propagation simulations...

$$
\begin{gather*}
\alpha^{*}(f, Z)=\left[c_{0}+c_{1} \sqrt{2 i f}+c_{2} f\right]_{Z}  \tag{1}\\
\mathcal{R}\left(\alpha^{*}\right)=\frac{\operatorname{LOG}(10)}{20} \lambda(d B) \tag{2}
\end{gather*}
$$

where $c_{0}=R_{d c} / 2 \mathrm{Z}$ and $c_{1}$ and $c_{2}$ are fit parameters for a given cable type, (e.g. RG-58, Flat coax) and length, Z .
$V_{\text {input }}(0, t)$ is an arbitrary voltage waveform

$$
\begin{equation*}
F_{i n p u t}^{*}(\omega)=\int_{-\infty}^{\infty} V_{\text {input }}(0, t) e^{-i \omega t} d t \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
F_{\text {output }}^{*}(Z, \omega)=F_{\text {input }}^{*}(\omega) e^{-\alpha^{*} Z} \tag{4}
\end{equation*}
$$

$$
(\omega=2 \pi f)
$$

$$
\begin{equation*}
V_{\text {output }}(Z, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F_{\text {input }}^{*}(\omega) e^{i \omega t} e^{-\alpha^{*} Z} d \omega \tag{5}
\end{equation*}
$$



## Cross Talk...

250ft long "pair" of RG58...
250 ft long flat coax, 4 wide...
Preliminary


- at 20 MHz , FlatCoax cable amplitude cross talk for sine wave input is about $1 \%$
- at same frequency, "RG58 pair"amplitude cross talk a factor of 5-10 less.
but 1 to 20 MHz is only a fraction of the relevant frequencies..

In progress: amplitude C.T. for actual signals... L-L, L-A, A-L, A-A timing C.T. using the Infinium...

## Voltage

## TOFp proposal suggests Nick Adams’ (Rice) version III CW bases simpler than previous versions, and stable on original schedule, would have been best approach the present schedule cannot afford this any more...

## EMCO

Hamamatsu HVSys
(declined to quote for our specs)
(don't work in magnetic fields)
Valery Astakhov et al.
http://www.tsl.uu.se/~sukhanov/HVSys/Astakhov/welcome.htm

- simple control via System Module
- single bus for all cells in a tray
- cells are small
- power <0.5 W/cell, or $<25 \mathrm{~W} /$ tray
- cost/cell $\sim 80 \$$, and can be produced quickly
- System Module ( $2 \mathrm{k} \$$ ) already in hand
- for testing, simple DOS GUI to control cells

06/04/99: began discussions with Valery... 06/09/99: agrees to make 6 cells on spec... 06/19/99:
07/04/99:
07/05/99:
07/08/99:
presently testing:
stability...
confirm power draw...
linearity/gain curves from diff. systems... performance magnetic field on vs. off... design specs for TOFp finalized... TOFp cells complete... cells carried to Dallas by a friend... cells arrive at Rice...

6U VME, connects only to PC \& AC power only feedthrough is single 10 ch . ribbon diameter 1.5", length ~ 2"
practical upper limit is 50 cells/tray


FEE version II
LE, 2ch, RT~750ps (commercially, RT $\sim 2.5$ ns)


FEE version III (completed 7/22/99) CFD, 1ch
$\rightarrow$ RT ~ 610ps
$\rightarrow$ resolution $\sim 11 \mathrm{ps}$



Functional Description of TOFp FEE version IV
WJL, 7/6/99 (revised 7/23/99)
v. I - 1ch, first breadboard
v. II - 2ch LE, RT~0.75ns
v. III - 1ch. first version of LE+CF
v. IV - 5ch LE w/ 2ch CFD

$\rightarrow 2$ boards, each 5 channels ( 3 ch LE+width, 2 ch LE+CF+width).

## Dimensions:

Board width to bolt onto TOFp cooling rails. Minimize length.

## I/O specs:

LE thresholds individually adjustable from 50 mV to 1 V
output rise time < 1 ns , and minimized.
(v.III has RT~0.6 ns)
output fixed flat-top voltage, NIM standard -800 mV
output widths individually adjustable in range 20ns to 100ns
dead time $=100 \mathrm{~ns}$
(=widest adjustable gate, dec. in ver.V)
provide board space and connections for input protection.

## Connections:

5 lemo female take 5 PMT signals
10 lemo female give 5 logic \& 5 PMT signals

## Present Schedule:

1 week - design/construct/test v.III (complete 7/22/99)
1 week - artwork for version IV
2 days - PCB fab (shopped)
1 week - stuff/test
$\rightarrow$ Completion of two (2) Version IV boards expected Aug 7, 1999.

- single discrimination to LRS TDC
- short cables


## Preliminary

Position Test and Comparison of TOFp FEE V4 and P/S 704



$\downarrow_{\text {Results from the big full system }}$

- large laser pulses...
- BC420 20x4x2cm + Epotek $301+\mathrm{R} 5946+2: 1: . . .1 \mathrm{CW}$ base
- First discrimination is Rice V.III
- 250 feet cable between 1st and 2nd discrimination
- Second discrimination is P/S 704
- CAMAC digitization to LRS 2228A TDC (50ps/ch)
- GPIB readout to PC and HBOOK/PAW



Declan Keane reaffirms interest in significant KSU participation Rice ( $\sim 6$ ), LBNL ( $\sim 2$ ), CMU ( $\sim 1$ ), MIT ( $\sim 1$ ) still active...

Time of Flight means starts and stops... time resolution is the quadrature sum of the two...
circa TOFp proposal, our understanding was the VPD would not exist in Year 1.
we simulated TOFp-based corrections to ZDC ( $\sim 250 \mathrm{ps}$ )
$\rightarrow \sim 50 \mathrm{ps}$ resn. under favorable conditions, $91 \%$ efficient this correction only works in highest mult collisions...
in peripheral $\mathrm{Au}+\mathrm{Au}, \mathrm{Si}+\mathrm{Si}, \mathrm{p}+\mathrm{p}, \rightarrow \sim 200$ ps starts?
a simple $<=\sim 16 \mathrm{ch} \mathrm{pVPD}$ would solve the problem rather effectively most of the detector/electronics can be borrowed $\rightarrow$ conventional and very cheap

Recent interest/actual work towards a VPD or pVPD...
Bellwied/Pandey et al. Bench tests of resolution of prop. electronics
Kaplan/Russ et al. New simulations
John Mitchell Possible interest in significant participation...
Crawford et al and TOFp...
What TOFp needs from a pVPD is not the full functionality of the well-known VPD.
TOFp wants Nch >> 2, up to Nch~16 ( $\mathrm{Nch} / 2$ elements per side)
TOFp only wants Nch analog signals with pVPD PMTs $\rightarrow$ TOFp ADCs... Nch logic signals from disc close by $\rightarrow$ TOFp TDCs...
CTB or equiv pretrigger as for RICH...
...then logic local to TOFp forms TOFp master starts


